
Development of a Robust Indoor 3D SLAM Algorithm
Timothy Murphy Dr. David Chelberg
Ohio University Ohio University
Honors Tutorial College School of Electrical Engineering and Computer Science
35 Park Place Russ College of Engineering and Technology
Athens, OH 45701 Ohio University
tm507211@ohio.edu chelberg@ohio.edu

ABSTRACT
Mobile robots need to continuously navigate

their environment. Doing so necessitates

using sensor data to both map that

environment and locate their position. A 3D

Simultaneous Localization and Mapping

(SLAM) algorithm for use with indoor robots

has been developed that addresses these

problems. It is based upon using a Microsoft

Kinect sensor, extracting features and

keypoints, matching the resulting features and

keypoints, and finally using the matched

keypoints to compute transformations that

produce a consistent global map consisting of

aligned point clouds. The algorithm aligns

RGB-D point clouds in an efficient manner;

however encounters problems for visually

sparse environments (small or no color

differentiation).

The current results of the algorithm are

presented with comparisons to other

frequently used techniques and include

possibilities for extensions to the algorithm.

This paper includes specifics about the

implementation using the Point Cloud Library

(PCL), OpenCV, and the actual experimental

robot, Turtlebot 2.0.

1. INTRODUCTION

Mobile robots, by definition, traverse the real

world. In doing so, the robot needs to know

where it is, where it is going and what objects

are in its surroundings. Given an unknown

location, the robot has to both create a map of

its environment and locate itself within that

map. A frequent method used to achieve this

utilizes a Simultaneous Localization and

Mapping (SLAM) algorithm. The idea behind

SLAM was first presented in [2]. This paper

addresses the problem of how to create a 3D

map of the robot’s surrounding environment

while at the same time determining the

location of the robot itself within this map.

This is done through the use of an original

SLAM algorithm. This paper will have three

focuses: specifying how the algorithm should

behave, describing the current state of the

algorithm with comparison to other mapping

and alignment techniques, and detailing

potential further improvements to the

algorithm.

Many SLAM algorithms are used with two-

dimensional (2D) sensors such as a video

camera producing color data, or three-

dimensional (3D) sensors such as a laser

depth scanner. This new algorithm takes color

(RGB) in addition to depth (D) information as

its input. Specifically, it receives sequential

RGBD point clouds and creates a 3D

representation of the surrounding

environment and determines the origin of the

sensor (the location of the robot) for each

point cloud. The algorithm presented in this

paper is implemented on the Turtlebot 2.0

robot using the ROS, PCL, OpenCV libraries,

and is written in C++. For more information

about the robot or libraries used visit the links

in [10], [11] and [12].

2. ALGORITHM BEHAVIOR

The algorithm described within this paper

creates a robust 3D SLAM algorithm for use

mailto:tm507211@ohio.edu
mailto:chelberg@ohio.edu

in indoor environments. The algorithm is

created for use with ground-based robots that

can produce RGBD point clouds. These point

clouds contain the 3D information of a

specific scene. The algorithm makes the

assumption that the robot’s sensor produces

RGBD point clouds; however, the algorithm

can still be used if sensory input from a robot

can be transformed to create a RGBD point

cloud. For this reason, the SLAM algorithm

was implemented on a Turtlebot 2.0 with a

Microsoft Kinect sensor that directly

produces RGBD point clouds without the

need for extra transformational computation.

The algorithm takes a series of sequential

RGBD point clouds and successively aligns

the point clouds into one consistent frame.

The algorithmic output is a single RGBXYZ

(color and 3D position) point cloud that

contains each input point cloud aligned into

one consistent frame.

The end goal for the algorithm is to both align

successive point clouds and also to perform

loop closure – loop closure is when the robot

recognizes that it has already visited its

current location – and to be able to do both in

real time. Loop closure detection is important

to reduce accumulated errors in the computed

map.

3. CURRENT STATE OF ALGORITHM

3.1 Overview

The algorithm is split between several steps,

setting up the initial variables, converting

between different 3D and 2D images,

extracting features and keypoints, matching

keypoints, and finally estimating the

transformation between images. The

following pseudocode gives a high level

description of the algorithm. The algorithm

continues until the user exits. The algorithm

performs initial set up and starts the loop by

accessing the next point cloud from the

sensor and then processes the point cloud.

 3D_SLAM{

 Clouds = {};

 Keypoints = {};

 Descriptors = {};

 Transform = {1, 0, 0, 0,

 0, 1, 0, 0,

 0, 0, 1, 0,

 0, 0, 0, 1};

 while(!user.quit()){

 cloud = get_next_cloud();

 Clouds.append(cloud);

 img = get_2d_image(cloud);

 feature, keypoint = get_2D_keypoints(img);

 Keypoints.append(keypoint);

 Descriptors.append(feature);

 if (length(Clouds) > 1){

 2D_corr = get_2D_correspondences(

 Keypoints[-1], Descriptors[-1],

 Keypoints[-2], Descriptors[-2]);

 3D_corr = get_3D_correspondences(

 2D_corr, Clouds[-1], Clouds[-2]);

 RANSAC(3D_corr);

 Transform = get_transform(3D_corr);

 Clouds[-1] *= Transform;

 }

 }

 }

}

3.2 Initial Setup and Conversions

As shown above, several variables for

holding the point clouds, keypoints,

description, and transform are set to an initial

state. The transform is set to the 4x4 identity

matrix and the rest are set to be empty lists.

When the program receives the point cloud

input, it is in RGBD format, which then needs

to be converted into RGBXYZ (color and 3D

position) format for easier use. The Point

Cloud Library (PCL) provides an easy

conversion between point cloud types. The

first step, after receiving the point cloud, is to

convert the 3D point cloud into a 2D image.

This is relatively simple as the sensor

produces a point cloud such that each point

matches exactly to a pixel of the 2D image.

That is the point cloud is stored in the same

order as the corresponding 2D image is. This

2D image is stored as an OpenCV Mat image

for compatible use with OpenCV

functionalities. OpenCV is a computer vision

library (focusing on 2D computer vision) that

implements several useful computer vision

algorithms and visualization tools in C++ and

Python. These features include changing the

format of images, extracting and matching

features, and providing easy to use methods

for showing images and their calculated

features on the screen.

3.3 Feature and Keypoint Extraction

Having obtained a 2D image of the

environment, the next step is to extract

important features such as Speeded Up

Robust Features (SURF) and Normal Aligned

Radial Features (NARF) using a local feature

detector. SURF features are calculated locally

within the image using a Hessian Blob

Detector. NARF features take a range image,

normalize the range image, and calculate

feature descriptors by determining how much

the range has changed within a set distance

from the point of interest. Extraction of these

keypoints is important as it allows for a much

smaller set of points to be used when

calculating the transform between two point

clouds. In theory, each point within the point

clouds could be used as a keypoint for

calculating the transform between them;

however, this would be very computationally

expensive and therefore would not be feasible

in an application meant to run in real time.

Another advantage to keypoints is that a

keypoint is representative of the points

surrounding it – that is the keypoint is

calculated using not only the point it

represents but also the surrounding points,

allowing keypoints to be more stable than any

one point. Two different methods for

calculating keypoints that can both be

associated with 3D coordinates were tested.

See section 5 for comparison of times needed

to calculate NARF and SURF keypoints on

experimental robot.

The first method used the feature detector

SURF. SURF keypoints were calculated

using OpenCV’s SURF descriptor class with

a Hessian threshold of 400. This threshold

was chosen after testing several other

thresholding values. Values greater than 400

produced too few keypoints while values less

than 400 produced less distinct keypoints that

created poor matches. The Hessian value

refers to the measure of the point using the

Hessian Corner Detector. The Hessian Corner

Detector is described in [8] as being an

affine-invariant feature detector that uses the

second partial derivatives of the image after

being smoothed with a Gaussian Kernel.

Affine-invariant features are stable across

affine-transforms which include scale,

rotation, translation and any other transform

that preserves points, straight lines, and

planes. SURF extracted keypoints from the

2D image that were then associated with 3D

space (Figure 1). The circles on the OpenCV

image represent each keypoint where the

circle size illustrates the distinctiveness of the

keypoint, the line represents its 2D

orientation and the centroid is the actual

location of the keypoint. Each green point in

the point cloud represents the XYZ position

of the keypoint.

Figure 1. OpenCV Image with Surf Keypoints (Top),

Surf Keypoints Associated to 3D Point Cloud (Bottom)

The second tested method utilized the NARF

method. Figure 2 shows a 2D image, range

image (depth image with violet being the

closest depth and red the farthest away), and

down-sampled point cloud with the results of

the NARF method shown in green. The point

cloud is down-sampled in order to reduce the

amount of space needed to store the point

cloud, as well as reducing the amount of time

need to perform the transformation into a

consistent frame. Down-sampling keeps the

general shape of the point cloud while

reducing the total number of points needed to

represent the point cloud.

From the two examples it can be seen that the

SURF keypoint extractor produces many

more keypoints than the NARF keypoint

extractor. In practice the SURF keypoints

were more stable than the NARF keypoints.

This can also be seen in the Figure 2 as many

of the NARF keypoints were found at the

edge of the point cloud. The keypoints found

at the edge are not repeatable from different

positions and therefore are not suitable for

use with keypoint matching between images.

When the robot changes pose, the edges of

the point cloud will too. The SURF keypoints

also have the added advantage of

incorporating the use of color information in

the SLAM algorithm instead of only using

depth information. The current state of the

algorithm uses SURF features for keypoint

matching and does not calculate NARF

keypoints as the number and quality of NARF

keypoints was unsatisfactory for aligning

point clouds.

3.4 Keypoint Matching

The SURF keypoints are matched using

OpenCV’s Fast Library for Approximating

Nearest Neighbors (FLANN) algorithm. The

next step involved finding the minimum

distance between two matching points and

filtering the correspondences by only

accepting the points that are less than twice

the minimum distance or some other small

threshold (0.2). This initial filtering of the

keypoint matches tries to determine good

matches. The transformations between one

image to the next only include rotation,

translation, or scale which are linear

transformations. This implies that the distance

between any two corresponding keypoints

should be fairly consistent. Any distance

greater than the threshold is likely to be a bad

match and is rejected. These specific

thresholds were chosen by experimentally

testing several thresholds. Thresholding based

only on the minimum distance produced very

few keypoints when the minimum distance

was less than 0.1. With a threshold of more

than twice the minimum distance, poorly

matched keypoints became more prevalent.

Figure 3 shows two consecutive images

where SURF keypoint correspondences are

shown by connecting lines from one image to

the other.

Figure 2. 2D Image (Top Left), Range Image (Top

Right), Down Sampled with Narf Features (Bottom)

Figure 3. SURF keypoint correspondences.

Next the 2D correspondences are converted

into 3D coordinate space. This process is the

inverse of the one used to convert the point

cloud into a 2D image. The 3D

correspondences are run through a Random

Sample Consensus Algorithm (RANSAC)

implemented in the PCL Library. The

RANSAC algorithm finds a set of inliers and

outliers based on the distance between

correspondences. The filtered

correspondences are then passed on to the

transformation estimation. These points are

being filtered again through the RANSAC

algorithm in order to find a consistent set of

corresponding keypoints. This will find a set

of inliers and outliers and try to maximize the

number of inliers. Inliers are corresponding

keypoints that have a small distance between

them (in a 3D Space). The process iteratively

chooses a random set of initial corresponding

keypoints and tests how many corresponding

keypoints follow the same transform (these

corresponding keypoints are the set of

inliers). All outliers, after the final iteration,

are discarded, in order to produce the set of

corresponding keypoints that produces a more

consistent transform. The largest set of

inlying corresponding keypoints is more

likely to produce the correct transform

between the two point clouds. If all

correspondences were used for transformation

estimation, including the outlying

correspondences, the likelihood of errors in

the transformation would increase due to the

inconsistent correspondences.

3.5 Transformation Estimation

Estimating the transform between the two

point clouds is necessary in order to align the

two point clouds together. This is done by

computing the transform from the previous

point cloud to the current point cloud – doing

this transforms each point cloud into the same

frame as the first point cloud. This is because

the previous cloud was already aligned into

the same frame as the cloud before it. The

transform from one point cloud to the

previous can be calculated, after the 3D

correspondences are calculated. The

algorithm uses PCL’s implementation of

Levenberg Marquardt (LM) based estimation.

The PCL implementation iteratively

computes the least-square of cost function

(distance between corresponding points) and

will continues until a minima is reached. This

means this implementation works well for

point clouds that are already relatively closely

aligned. The LM based estimation returns a 4

by 4 transformation matrix that can then be

applied to the newest point cloud to align it

into the previous point clouds frame.

3.6 Summary of Algorithm Behavior

At this point, the algorithm takes a sequence

of RGB-D point clouds. It computes the 2D

color image from this incoming point cloud

as well as the corresponding RGBXYZ point

cloud. The algorithm takes the 2D image and

computes SURF features and keypoints using

OpenCV. The keypoints are matched to the

keypoints calculated for the previous point

cloud using OpenCV’s FLANN algorithm.

The matches are filtered down in 2D space

then used to create the list of 3D

correspondences. The 3D correspondences

are filtered down again using a RANSAC

algorithm using PCL. The resulting

correspondences are then used to calculate a

transform using PCL’s Levenberg Marquardt

Transformation Estimation algorithm to align

the newest point cloud to the one before it.

Figure 4 shows a flow chart (left to right) that

shows how the algorithm is organized. The

lines show that the block on the left’s output

is an input to the one on the right of the line.

Figure 4. Flowchart of Algorithm organization. The process goes from left to right.

3.7 Comparison of SLAM Techniques

SLAM is a common method of aligning

sensor readings together into a common

frame. The authors of [5] and [6] describe

SLAM algorithms that implement

Appearance based SLAM algorithms. That is

each implement a SLAM algorithm that uses

the RGB information of their sensor’s input.

The author of [9] describes a SLAM

algorithm that uses Depth sensors in order to

build its map and determine the location of

the robot. All three of these algorithms

describe various SLAM algorithms for use

with mobile robots; however, these do not

discuss using both color and depth

information for calculating the transform

between each frame. The algorithm described

in [6] does create a RGB-D map as its final

product; however, the transformations are

calculated using only color information. The

algorithm described within this paper uses

both color and depth information to calculate

the transformation between frames. This is

done by first calculating the color features in

2D space then associating these features to

their 3D location within the point clouds.

These keypoints that are a combination of

color features and 3D position are then used

to calculate the transform between frames.

4. FUTURE IMPROVEMENTS

4.1 Features

The next goal is to make the algorithm more

robust i.e. the algorithm is made more likely

to find the correct transform from one frame

to the next. The algorithm would benefit from

computing more feature types. Currently only

SURF features are being computed as NARF

features produced poor results in most

situations. Adding additional feature types

will likely produce more reliable

transformation estimates, because there are

more methods of calculating the transform

between frames. [1] and [7] describe the

algorithms for calculating SURF and SIFT

features as well as what these features

represent, respectively. Each of the features

can be used to calculate the transform. If

multiple feature sets produce a similar

transform, there becomes a greater certainty

that that transform is correct. Another issue

could be that one type of feature could

produce the wrong transform in certain

situations. If this is noticed, the algorithm

could exclude it from the results and rely only

on the other feature transforms in those

situations.

Several popular features for use in feature

matching are Scale Invariant Feature

Transform (SIFT), Binary Robust Invariant

Scalable Keypoints (BRISK), and Features

from Accelerated Segment Test (FAST). Fox

et al [3] describes a similar mapping

algorithm with the use of SIFT features. The

authors of [6] discuss an online mapping

algorithm for large-scale areas by using

SURF and SIFT keypoints.

The added features and keypoints can be used

to calculate a transformation estimate for each

incoming point cloud and then would allow

the program to choose between the

transformations returned. If multiple

keypoints produce a similar transform then it

is more likely for that transform to be correct.

If each of the keypoints produces several

different transforms, then this also lets the

algorithm know more work needs to be done

to calculate an acceptable transform.

4.2 Transformation Estimation

The transformation estimation portion of the

algorithm can be improved by implementing

the LM transform estimation algorithm so

that a method for testing convergence can be

implemented. The newly implemented LM

transform estimation algorithm would be very

similar; however, it would offer a method of

testing the alignment of the point clouds. [4]

offers an implementation of Levenberg-

Marquardt algorithm and a method of

calculating the covariance matrix that can be

used to determine how well the point clouds

are aligned. If two point clouds are aligned,

this means they have been transformed into

the same frame of reference. If each of the

point clouds are fully aligned, the resulting

map would be a reconstruction of the

environment that has been seen by the robot.

This means that the better the alignment

between frames, the more accurate the map

is.

Another common method for calculating rigid

transformation estimation using

corresponding points is Singular Value

Decomposition (SVD) that is also

implemented in PCL.

Being able to use both of these estimation

techniques will increase the robustness of the

algorithm. Being able to compare the output

of each technique allows the determination

that the transform is more likely to be correct

if both produce similar results.

4.3 Loop Closure

Loop closure occurs when the robot comes

back to a place it has already been to (the

robot has performed a loop). This can also be

defined as two non-consecutive point clouds

that share a number of matching keypoints

that are greater than a given threshold. Loop

closures can reduce the error of mapping

systems. Each loop closure adds another

constraint to the map. The map then

distributes the error along the loop evenly

(visually this appears as if the map is

snapping into place such that the two ends of

the loop match up). Figure 5 shows a

depiction of loop closure where each is

numbered in sequential order and each line

shows a known connection between sensor

readings. Each numbered circle’s position

represents the X,Y position of the robot when

it took the sensor reading.

5. Experimental Robot

The robot used for testing this algorithm is
the Turtlebot 2.0. A picture of the robot can
be seen in figure 6. The robot consists of a
Kobuki base, a Microsoft 360 Kinect
sensor, a mounting structure and an ROS
enable laptop. The laptop used for testing
was the ASUS X200CA with an Intel
Celeron 1007U processor and 4 GB RAM.
Other sensors include the Kobuki’s wheel
encoders, gyroscope, bump, cliff, and wheel
drop sensors. Feature extraction of NARF
and SURF keypoints were performed using
the Turtlebot’s Laptop. Each feature type
was computed on 30 point clouds that had
been previously captured. SURF keypoints
were calculated on average in 133 ms
while the NARF Features took on average
14.405 seconds for the same set of point
clouds.

Figure 6. Turtlebot 2.0 (picture from www.turtlebot.com)

Figure 5. Depiction of Loop Closure: Loop Detected between 8 and 2 (Left) Loop Closed (right)

6. CONCLUSION

This paper described the current status of a

new RGB-D slam algorithm, how keypoints

and features are calculated, how the keypoints

are associated into 3D space, how the

correspondences are filtered to reduce the

number of bad correspondences and how the

remaining correspondences are used to

calculate the transform between the current

and previous point cloud. The algorithm

described above uses both color and 3D

position information to determine the

transform between point clouds, which differs

from previous SLAM techniques. Also

discussed in this paper is future work to be

performed to create a more robust algorithm

by incorporating more feature types as well as

changing the implementation of the

transformation estimation algorithm to allow

for testing for alignment of the point clouds.

7. REFERENCES

[1] Bay, H., Ess, A., Gool, L., Tuytelaars, T.

SURF: Speeded Up Robust Features.

Computer Vision and Image

Understanding (CVIU). (2008). Vol 110,

No. 3, pgs 346-359.

[2] Cheeseman, P., Self, M., Smith, R.

Estimating Uncertain Spatial

Relationships in Robotics. Proceedings of

the Second Annual Conference of

Uncertainty in Artificial Intelligence.

(1986). University of Pennsylvania,

Philadelphia, PA, USA: Elsevier. pgs

435-461.

[3] Fox, D., Henry, P., Herbst, E. Krainin,

M., Ren, X. RGB-D Mapping: Using

Depth Cameras for Dense 3D Modeling

of Indoor Environments. Web. Viewed 21

April 2014.

http://www.cs.washington.edu/robotics/po

stscripts/3d-mapping-iser-10-final.pdf.

2013.

[4] Flannery, B., Press, W., Teukolsky, S.,

Vetterling, W. Numerical Recipes 3
rd

Edition: The Art of Scientific Computing.

Columbia Press. (September 2007).

[5] Hung, D., Sun, C., Wang, Y. Improving

Data Association in Robot SLAM with

Monocular Vision. Journal of Information

Science and Engineering 27. (March

2011). pgs 1823-1837.

[6] Labbe, M., Michaud, F. Appearance-

Based Loop Closure Detection for Online

Large-Scale and Long-Term Operation.

IEEE Transactions on Robotics. (June

2013). pgs 734-745

[7] Lowe, D. G. Distinctive Image Features

from Scale-Invariant Keypoints.

International Journal of Computer Vision.

(2004). Vol 60, No. 2, pgs 91-110.

[8] Mikolajczyk, k., Schmid, C. An affine

invariant interest point detector.

Proceedings of the 8
th

 International

Conference on Computer Vision,

Vancouver, Canada. 2002.

[9] Mirowski, P. Depth Camera SLAM on a

Low-cost WiFi Mapping Robot. Web.

Viewed 21 September 2014.

http://www.academia.edu/2527447/Depth

_camera_SLAM_on_a_low-

cost_WiFi_mapping_robot

[10] Description of Turtlebot 2.0 can be found

at http://www.turtlebot.com/

[11] Description of Microsoft Kinect and how

it can be used can be found at

http://www.microsoft.com/en-

us/kinectforwindows/meetkinect/features.

aspx

[12] For specifics on OpenCV, PCL, and ROS

visit http://www.opencv.org,

http://pointclouds.org, and

http://www.ros.org respectively.

http://www.academia.edu/2527447/Depth_camera_SLAM_on_a_low-cost_WiFi_mapping_robot
http://www.academia.edu/2527447/Depth_camera_SLAM_on_a_low-cost_WiFi_mapping_robot
http://www.academia.edu/2527447/Depth_camera_SLAM_on_a_low-cost_WiFi_mapping_robot
http://www.turtlebot.com/
http://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx
http://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx
http://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx
http://www.opencv.org/
http://pointclouds.org/
http://www.ros.org/

