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ABSTRACT 
Mobile robots need to continuously navigate 

their environment.  Doing so necessitates 

using sensor data to both map that 

environment and locate their position. A 3D 

Simultaneous Localization and Mapping 

(SLAM) algorithm for use with indoor robots 

has been developed that addresses these 

problems.  It is based upon using a Microsoft 

Kinect sensor, extracting features and 

keypoints, matching the resulting features and 

keypoints, and finally using the matched 

keypoints to compute transformations that 

produce a consistent global map consisting of 

aligned point clouds. The algorithm aligns 

RGB-D point clouds in an efficient manner; 

however encounters problems for visually 

sparse environments (small or no color 

differentiation).  

The current results of the algorithm are 

presented with comparisons to other 

frequently used techniques and include 

possibilities for extensions to the algorithm. 

This paper includes specifics about the 

implementation using the Point Cloud Library 

(PCL), OpenCV, and the actual experimental 

robot, Turtlebot 2.0. 

 

1. INTRODUCTION 

Mobile robots, by definition, traverse the real 

world.   In doing so, the robot needs to know 

where it is, where it is going and what objects 

are in its surroundings.  Given an unknown 

location, the robot has to both create a map of 

its environment and locate itself within that 

map.  A frequent method used to achieve this 

utilizes a Simultaneous Localization and 

Mapping (SLAM) algorithm. The idea behind 

SLAM was first presented in [2]. This paper 

addresses the problem of how to create a 3D 

map of the robot’s surrounding environment 

while at the same time determining the 

location of the robot itself within this map. 

This is done through the use of an original 

SLAM algorithm. This paper will have three 

focuses: specifying how the algorithm should 

behave, describing the current state of the 

algorithm with comparison to other mapping 

and alignment techniques, and detailing 

potential further improvements to the 

algorithm. 

 

Many SLAM algorithms are used with two-

dimensional (2D) sensors such as a video 

camera producing color data, or three-

dimensional (3D) sensors such as a laser 

depth scanner. This new algorithm takes color 

(RGB) in addition to depth (D) information as 

its input.  Specifically, it receives sequential 

RGBD point clouds and creates a 3D 

representation of the surrounding 

environment and determines the origin of the 

sensor (the location of the robot) for each 

point cloud. The algorithm presented in this 

paper is implemented on the Turtlebot 2.0 

robot using the ROS, PCL, OpenCV libraries, 

and is written in C++. For more information 

about the robot or libraries used visit the links 

in [10], [11] and [12]. 

 

2. ALGORITHM BEHAVIOR 

The algorithm described within this paper 

creates a robust 3D SLAM algorithm for use 
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in indoor environments. The algorithm is 

created for use with ground-based robots that 

can produce RGBD point clouds. These point 

clouds contain the 3D information of a 

specific scene. The algorithm makes the 

assumption that the robot’s sensor produces 

RGBD point clouds; however, the algorithm 

can still be used if sensory input from a robot 

can be transformed to create a RGBD point 

cloud. For this reason, the SLAM algorithm 

was implemented on a Turtlebot 2.0 with a 

Microsoft Kinect sensor that directly 

produces RGBD point clouds without the 

need for extra transformational computation. 

The algorithm takes a series of sequential 

RGBD point clouds and successively aligns 

the point clouds into one consistent frame. 

The algorithmic output is a single RGBXYZ 

(color and 3D position) point cloud that 

contains each input point cloud aligned into 

one consistent frame. 

The end goal for the algorithm is to both align 

successive point clouds and also to perform 

loop closure – loop closure is when the robot 

recognizes that it has already visited its 

current location – and to be able to do both in 

real time.  Loop closure detection is important 

to reduce accumulated errors in the computed 

map. 

 

3. CURRENT STATE OF ALGORITHM 

3.1 Overview 

The algorithm is split between several steps, 

setting up the initial variables, converting 

between different 3D and 2D images, 

extracting features and keypoints, matching 

keypoints, and finally estimating the 

transformation between images. The 

following pseudocode gives a high level 

description of the algorithm. The algorithm 

continues until the user exits. The algorithm 

performs initial set up and starts the loop by 

accessing the next point cloud from the 

sensor and then processes the point cloud. 

 3D_SLAM{ 

    Clouds = {}; 

    Keypoints = {}; 

    Descriptors = {}; 

    Transform = {1, 0, 0, 0, 

                 0, 1, 0, 0, 

                 0, 0, 1, 0, 

                 0, 0, 0, 1}; 

    while(!user.quit()){ 

      cloud = get_next_cloud(); 

      Clouds.append(cloud); 

      img = get_2d_image(cloud); 

      feature, keypoint = get_2D_keypoints(img); 

      Keypoints.append(keypoint); 

      Descriptors.append(feature); 

      if (length(Clouds) > 1){ 

        2D_corr = get_2D_correspondences( 

                                  Keypoints[-1], Descriptors[-1], 

                                  Keypoints[-2], Descriptors[-2]); 

        3D_corr = get_3D_correspondences( 

                                  2D_corr, Clouds[-1], Clouds[-2]); 

        RANSAC(3D_corr); 

        Transform = get_transform(3D_corr); 

        Clouds[-1] *= Transform; 

      } 

    } 

  } 

} 

3.2 Initial Setup and Conversions 

As shown above, several variables for 

holding the point clouds, keypoints, 

description, and transform are set to an initial 

state. The transform is set to the 4x4 identity 

matrix and the rest are set to be empty lists. 

When the program receives the point cloud 

input, it is in RGBD format, which then needs 

to be converted into RGBXYZ (color and 3D 

position) format for easier use. The Point 

Cloud Library (PCL) provides an easy 

conversion between point cloud types. The 

first step, after receiving the point cloud, is to 

convert the 3D point cloud into a 2D image. 

This is relatively simple as the sensor 

produces a point cloud such that each point 

matches exactly to a pixel of the 2D image. 

That is the point cloud is stored in the same 

order as the corresponding 2D image is. This 

2D image is stored as an OpenCV Mat image 

for compatible use with OpenCV 

functionalities. OpenCV is a computer vision 

library (focusing on 2D computer vision) that 



implements several useful computer vision 

algorithms and visualization tools in C++ and 

Python. These features include changing the 

format of images, extracting and matching 

features, and providing easy to use methods 

for showing images and their calculated 

features on the screen. 

3.3 Feature and Keypoint Extraction 

Having obtained a 2D image of the 

environment, the next step is to extract 

important features such as Speeded Up 

Robust Features (SURF) and Normal Aligned 

Radial Features (NARF) using a local feature 

detector. SURF features are calculated locally 

within the image using a Hessian Blob 

Detector. NARF features take a range image, 

normalize the range image, and calculate 

feature descriptors by determining how much 

the range has changed within a set distance 

from the point of interest. Extraction of these 

keypoints is important as it allows for a much 

smaller set of points to be used when 

calculating the transform between two point 

clouds. In theory, each point within the point 

clouds could be used as a keypoint for 

calculating the transform between them; 

however, this would be very computationally 

expensive and therefore would not be feasible 

in an application meant to run in real time. 

Another advantage to keypoints is that a 

keypoint is representative of the points 

surrounding it – that is the keypoint is 

calculated using not only the point it 

represents but also the surrounding points, 

allowing keypoints to be more stable than any 

one point. Two different methods for 

calculating keypoints that can both be 

associated with 3D coordinates were tested. 

See section 5 for comparison of times needed 

to calculate NARF and SURF keypoints on 

experimental robot. 

The first method used the feature detector 

SURF.  SURF keypoints were calculated 

using OpenCV’s SURF descriptor class with 

a Hessian threshold of 400. This threshold 

was chosen after testing several other 

thresholding values. Values greater than 400 

produced too few keypoints while values less 

than 400 produced less distinct keypoints that 

created poor matches. The Hessian value 

refers to the measure of the point using the 

Hessian Corner Detector. The Hessian Corner 

Detector is described in [8] as being an 

affine-invariant feature detector that uses the 

second partial derivatives of the image after 

being smoothed with a Gaussian Kernel. 

Affine-invariant features are stable across 

affine-transforms which include scale, 

rotation, translation and any other transform 

that preserves points, straight lines, and 

planes. SURF extracted keypoints from the 

2D image that were then associated with 3D 

space (Figure 1). The circles on the OpenCV 

image represent each keypoint where the 

circle size illustrates the distinctiveness of the 

keypoint, the line represents its 2D 

orientation and the centroid is the actual 

location of the keypoint. Each green point in 

the point cloud represents the XYZ position 

of the keypoint. 

 

 

 

Figure 1.  OpenCV Image with Surf Keypoints (Top), 

Surf Keypoints Associated to 3D Point Cloud (Bottom) 



The second tested method utilized the NARF 

method. Figure 2 shows a 2D image, range 

image (depth image with violet being the 

closest depth and red the farthest away), and 

down-sampled point cloud with the results of 

the NARF method shown in green. The point 

cloud is down-sampled in order to reduce the 

amount of space needed to store the point 

cloud, as well as reducing the amount of time 

need to perform the transformation into a 

consistent frame. Down-sampling keeps the 

general shape of the point cloud while 

reducing the total number of points needed to 

represent the point cloud. 

 

 

From the two examples it can be seen that the 

SURF keypoint extractor produces many 

more keypoints than the NARF keypoint 

extractor. In practice the SURF keypoints 

were more stable than the NARF keypoints. 

This can also be seen in the Figure 2 as many 

of the NARF keypoints were found at the 

edge of the point cloud. The keypoints found 

at the edge are not repeatable from different 

positions and therefore are not suitable for 

use with keypoint matching between images. 

When the robot changes pose, the edges of 

the point cloud will too. The SURF keypoints 

also have the added advantage of 

incorporating the use of color information in 

the SLAM algorithm instead of only using 

depth information. The current state of the 

algorithm uses SURF features for keypoint 

matching and does not calculate NARF 

keypoints as the number and quality of NARF 

keypoints was unsatisfactory for aligning 

point clouds. 

3.4 Keypoint Matching 

The SURF keypoints are matched using 

OpenCV’s Fast Library for Approximating 

Nearest Neighbors (FLANN) algorithm. The 

next step involved finding the minimum 

distance between two matching points and 

filtering the correspondences by only 

accepting the points that are less than twice 

the minimum distance or some other small 

threshold (0.2). This initial filtering of the 

keypoint matches tries to determine good 

matches. The transformations between one 

image to the next only include rotation, 

translation, or scale which are linear 

transformations. This implies that the distance 

between any two corresponding keypoints 

should be fairly consistent. Any distance 

greater than the threshold is likely to be a bad 

match and is rejected. These specific 

thresholds were chosen by experimentally 

testing several thresholds. Thresholding based 

only on the minimum distance produced very 

few keypoints when the minimum distance 

was less than 0.1. With a threshold of more 

than twice the minimum distance, poorly 

matched keypoints became more prevalent. 

Figure 3 shows two consecutive images 

where SURF keypoint correspondences are 

shown by connecting lines from one image to 

the other. 

 

Figure 2. 2D Image (Top Left), Range Image (Top 

Right), Down Sampled with Narf Features (Bottom) 

Figure 3.  SURF keypoint correspondences. 



Next the 2D correspondences are converted 

into 3D coordinate space. This process is the 

inverse of the one used to convert the point 

cloud into a 2D image. The 3D 

correspondences are run through a Random 

Sample Consensus Algorithm (RANSAC) 

implemented in the PCL Library. The 

RANSAC algorithm finds a set of inliers and 

outliers based on the distance between 

correspondences. The filtered 

correspondences are then passed on to the 

transformation estimation. These points are 

being filtered again through the RANSAC 

algorithm in order to find a consistent set of 

corresponding keypoints. This will find a set 

of inliers and outliers and try to maximize the 

number of inliers. Inliers are corresponding 

keypoints that have a small distance between 

them (in a 3D Space). The process iteratively 

chooses a random set of initial corresponding 

keypoints and tests  how many corresponding 

keypoints follow the same transform (these 

corresponding keypoints are the set of 

inliers). All outliers, after the final iteration, 

are discarded, in order to produce the set of 

corresponding keypoints that produces a more 

consistent transform. The largest set of 

inlying corresponding keypoints is more 

likely to produce the correct transform 

between the two point clouds. If all 

correspondences were used for transformation 

estimation, including the outlying 

correspondences,  the likelihood of errors in 

the transformation would increase due to the 

inconsistent correspondences. 

3.5 Transformation Estimation 

Estimating the transform between the two 

point clouds is necessary in order to align the 

two point clouds together. This is done by 

computing the transform from the previous 

point cloud to the current point cloud – doing 

this transforms each point cloud into the same 

frame as the first point cloud. This is because 

the previous cloud was already aligned into 

the same frame as the cloud before it. The 

transform from one point cloud to the 

previous can be calculated, after the 3D 

correspondences are calculated. The 

algorithm uses PCL’s implementation of 

Levenberg Marquardt (LM) based estimation. 

The PCL implementation iteratively 

computes the least-square of cost function 

(distance between corresponding points) and 

will continues until a minima is reached. This 

means this implementation works well for 

point clouds that are already relatively closely 

aligned. The LM based estimation returns a 4 

by 4 transformation matrix that can then be 

applied to the newest point cloud to align it 

into the previous point clouds frame. 

3.6 Summary of Algorithm Behavior 

At this point, the algorithm takes a sequence 

of RGB-D point clouds. It computes the 2D 

color image from this incoming point cloud 

as well as the corresponding RGBXYZ point 

cloud. The algorithm takes the 2D image and 

computes SURF features and keypoints using 

OpenCV. The keypoints are matched to the 

keypoints calculated for the previous point 

cloud using OpenCV’s FLANN algorithm. 

The matches are filtered down in 2D space 

then used to create the list of 3D 

correspondences. The 3D correspondences 

are filtered down again using a RANSAC 

algorithm using PCL. The resulting 

correspondences are then used to calculate a 

transform using PCL’s Levenberg Marquardt 

Transformation Estimation algorithm to align 

the newest point cloud to the one before it. 

Figure 4 shows a flow chart (left to right) that 

shows how the algorithm is organized. The 

lines show that the block on the left’s output 

is an input to the one on the right of the line. 

Figure 4.  Flowchart of Algorithm organization. The process goes from left to right. 



3.7 Comparison of SLAM Techniques 

SLAM is a common method of aligning 

sensor readings together into a common 

frame. The authors of [5] and [6] describe 

SLAM algorithms that implement 

Appearance based SLAM algorithms. That is 

each implement a SLAM algorithm that uses 

the RGB information of their sensor’s input. 

The author of [9] describes a SLAM 

algorithm that uses Depth sensors in order to 

build its map and determine the location of 

the robot. All three of these algorithms 

describe various SLAM algorithms for use 

with mobile robots; however, these do not 

discuss using both color and depth 

information for calculating the transform 

between each frame. The algorithm described 

in [6] does create a RGB-D map as its final 

product; however, the transformations are 

calculated using only color information. The 

algorithm described within this paper uses 

both color and depth information to calculate 

the transformation between frames. This is 

done by first calculating the color features in 

2D space then associating these features to 

their 3D location within the point clouds. 

These keypoints that are a combination of 

color features and 3D position are then used 

to calculate the transform between frames. 

4. FUTURE IMPROVEMENTS 

4.1 Features 

The next goal is to make the algorithm more 

robust i.e. the algorithm is made more likely 

to find the correct transform from one frame 

to the next. The algorithm would benefit from 

computing more feature types. Currently only 

SURF features are being computed as NARF 

features produced poor results in most 

situations. Adding additional feature types 

will likely produce more reliable 

transformation estimates, because there are 

more methods of calculating the transform 

between frames. [1] and [7] describe the 

algorithms for calculating SURF and SIFT 

features as well as what these features 

represent, respectively. Each of the features 

can be used to calculate the transform. If 

multiple feature sets produce a similar 

transform, there becomes a greater certainty 

that that transform is correct. Another issue 

could be that one type of feature could 

produce the wrong transform in certain 

situations. If this is noticed, the algorithm 

could exclude it from the results and rely only 

on the other feature transforms in those 

situations. 

Several popular features for use in feature 

matching are Scale Invariant Feature 

Transform (SIFT), Binary Robust Invariant 

Scalable Keypoints (BRISK), and Features 

from Accelerated Segment Test (FAST). Fox 

et al [3] describes a similar mapping 

algorithm with the use of SIFT features. The 

authors of [6] discuss an online mapping 

algorithm for large-scale areas by using 

SURF and SIFT keypoints. 

 

The added features and keypoints can be used 

to calculate a transformation estimate for each 

incoming point cloud and then would allow 

the program to choose between the 

transformations returned. If multiple 

keypoints produce a similar transform then it 

is more likely for that transform to be correct. 

If each of the keypoints produces several 

different transforms, then this also lets the 

algorithm know more work needs to be done 

to calculate an acceptable transform. 

4.2 Transformation Estimation 

The transformation estimation portion of the 

algorithm can be improved by implementing 

the LM transform estimation algorithm so 

that a method for testing convergence can be 

implemented. The newly implemented LM 

transform estimation algorithm would be very 

similar; however, it would offer a method of 

testing the alignment of the point clouds. [4] 

offers an implementation of Levenberg-

Marquardt algorithm and a method of 

calculating the covariance matrix that can be 

used to determine how well the point clouds 

are aligned. If two point clouds are aligned, 



this means they have been transformed into 

the same frame of reference. If each of the 

point clouds are fully aligned, the resulting 

map would be a reconstruction of the 

environment that has been seen by the robot. 

This means that the better the alignment 

between frames, the more accurate the map 

is. 

Another common method for calculating rigid 

transformation estimation using 

corresponding points is Singular Value 

Decomposition (SVD) that is also 

implemented in PCL.  

Being able to use both of these estimation 

techniques will increase the robustness of the 

algorithm. Being able to compare the output 

of each technique allows the determination 

that the transform is more likely to be correct 

if both produce similar results. 

 

4.3 Loop Closure 

Loop closure occurs when the robot comes 

back to a place it has already been to (the 

robot has performed a loop). This can also be 

defined as two non-consecutive point clouds 

that share a number of matching keypoints 

that are greater than a given threshold. Loop 

closures can reduce the error of mapping 

systems. Each loop closure adds another 

constraint to the map. The map then 

distributes the error along the loop evenly 

(visually this appears as if the map is 

snapping into place such that the two ends of 

the loop match up). Figure 5 shows a 

depiction of loop closure where each is 

numbered in sequential order and each line 

shows a known connection between sensor 

readings. Each numbered circle’s position 

represents the X,Y position of the robot when 

it took the sensor reading. 

5. Experimental Robot 

The robot used for testing this algorithm is 
the Turtlebot 2.0. A picture of the robot can 
be seen in figure 6. The robot consists of a 
Kobuki base, a Microsoft 360 Kinect 
sensor, a mounting structure and an ROS 
enable laptop. The laptop used for testing 
was the ASUS X200CA with an Intel 
Celeron 1007U processor and 4 GB RAM. 
Other sensors include the Kobuki’s wheel 
encoders, gyroscope, bump, cliff, and wheel 
drop sensors. Feature extraction of NARF 
and SURF keypoints were performed using 
the Turtlebot’s Laptop. Each feature type 
was computed on 30 point clouds that had 
been previously captured. SURF keypoints 
were calculated on average in 133 ms 
while the NARF Features took on average 
14.405 seconds for the same set of point 
clouds. 

 
Figure 6. Turtlebot 2.0 (picture from www.turtlebot.com)  

Figure 5. Depiction of Loop Closure: Loop Detected between 8 and 2 (Left) Loop Closed (right) 



6. CONCLUSION 

This paper described the current status of a 

new RGB-D slam algorithm, how keypoints 

and features are calculated, how the keypoints 

are associated into 3D space, how the 

correspondences are filtered to reduce the 

number of bad correspondences and how the 

remaining correspondences are used to 

calculate the transform between the current 

and previous point cloud. The algorithm 

described above uses both color and 3D 

position information to determine the 

transform between point clouds, which differs 

from previous SLAM techniques. Also 

discussed in this paper is future work to be 

performed to create a more robust algorithm 

by incorporating more feature types as well as 

changing the implementation of the 

transformation estimation algorithm to allow 

for testing for alignment of the point clouds. 
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