
Quantified Linear Arithmetic Satisfiability Via
Fine-grained Strategy Improvement

Charlie Murphy1[0000−0003−4813−7578](�)

and Zachary Kincaid2[0000−0002−7294−9165]

1 University of Wisconsin-Madison, Madison WI 53706, USA
tcmurphy4@wisc.edu

2 Princeton University, Princeton NJ 08540, USA
zkincaid@cs.princeton.edu

Abstract. Checking satisfiability of formulae in the theory of linear
arithmetic has far reaching applications, including program verification
and synthesis. Many satisfiability solvers excel at proving and disprov-
ing satisfiability of quantifier-free linear arithmetic formulas and have re-
cently begun to support quantified formulas. Beyond simply checking sat-
isfiability of formulas, fine-grained strategies for satisfiability games en-
ables solving additional program verification and synthesis tasks. Quanti-
fied satisfiability games are played between two players—SAT and UNSAT—
who take turns instantiating quantifiers and choosing branches of boolean
connectives to evaluate the given formula. A winning strategy for SAT
(resp. UNSAT) determines the choices of SAT (resp. UNSAT) as a func-
tion of UNSAT’s (resp. SAT’s) choices such that the given formula evalu-
ates to true (resp. false) no matter what choices UNSAT (resp. SAT) may
make. As we are interested in both checking satisfiability and synthesiz-
ing winning strategies, we must avoid conversion to normal-forms that
alter the game semantics of the formula (e.g. prenex normal form). We
present fine-grained strategy improvement and strategy synthesis, the
first technique capable of synthesizing winning fine-grained strategies for
linear arithmetic satisfiability games, which may be used in higher-level
applications. We experimentally evaluate our technique and find it per-
forms favorably compared with state-of-the-art solvers.

Keywords: Quantified Satisfiability · SMT · Game Semantics · Strategy
Improvement

1 Introduction

Checking satisfiability of quantified formulae modulo the theory of linear (inte-
ger or real) arithmetic (LA) has applications to a broad class of problems (e.g.,
program verification and synthesis). Satisfiability modulo theory (SMT) solvers
excel at deciding satisfiability of the ground (quantifier free) fragment of first or-
der theories (e.g., LA). Other techniques like first order theorem solvers work well
for quantified formulae but have limited support for theories. Typically, SMT

1

2 C. Murphy and Z. Kincaid

solvers either perform quantifier elimination, which is often computationally ex-
pensive, or heuristically instantiate quantifiers, which is sound but incomplete
for deciding satisfiability [19]. Recently, decision procedures have been developed
to check satisfiability of quantified LA formulae directly [4,8,18,5]. Notably, both
Bjørner and Janota [4]’s and Farzan and Kincaid [8]’s decision procedures are
based on the game semantics of first-order logic.

The game semantics of first-order logic gives meaning to a formula as a two
player game [12]. Every (LA) formula induces a game between two players, SAT
and UNSAT. SAT tries to prove the formula satisfiable, while UNSAT tries to
prove it unsatisfiable. The players take turns instantiating quantifiers or choosing
a sub-formula of boolean connectives. SAT controls existential quantifiers and
disjunctions, while UNSAT controls universal quantifiers and conjunctions. SAT
wins the game if the chosen model satisfies the chosen sub-formula; otherwise,
UNSAT wins. A (LA) formula is satisfiable exactly when SAT has a winning
strategy—a function determining how SAT should instantiate existential quan-
tifiers and choose sub-formulae of disjuncts to prove the formula satisfiable—to
the induced game.

The game-theoretic view of formulae suggests a variation of the satisfiability
problem, in which the goal is not (just) to check satisfiability of a formula, but to
synthesize a winning strategy for one of the two players. Strategy synthesis can
be used as a decision procedure, but can also used for other tasks where a simple
yes or no is insufficient (e.g., program synthesis, angelic symbolic execution, or
invariant generation).

While the game semantics of first-order logic gives meaning to both quanti-
fiers and connectives, both Bjørner and Janota [4]’s and Farzan and Kincaid [8]’s
decision procedures only make use of the game semantics of quantifiers. To do
so, both techniques require the input formula to be in prenex normal form—the
formula is a sequence of quantifiers followed by a quantifier free formula. While
any formula may be converted into a prenex normal form, doing so is undesirable
for two reasons: (1) conversion to prenex normal form may increase the number
of quantifier alternations within the formula and (2) conversion to prenex normal
form may change the game semantics of the formula. Since prenex conversion
does not preserve game semantics, it cannot be used in applications that rely on
strategy synthesis rather than a yes/no answer.

Existing techniques for checking satisfiability of LA formulas are incapable
of producing strategies for both quantifiers and Boolean connectives [4,8,18,5].
While both Bjørner and Janota [4]’s and Farzan and Kincaid [8,9] use the game
semantics of LA formulas, they limit their scope to quantifiers via conversion to
prenex normal form. Furthermore, the procedure by Bjørner and Janota does
not produce an explicit term used to instantiate quantifiers. On the other hand,
while the techniques of both Reynolds et al. [18] and Bonacina et al. [5] exploit
the fine-grained (quantifier and Boolean connectives) structure of formulas, they
do not produce a winning strategy.

This paper presents a decision procedure for checking satisfiability of quanti-
fied LA formulae that exploits the fine-grained structure of a formula to produce

QLA Satisfiability Via Fine-grained Strategy Improvement 3

a winning strategy for SAT or UNSAT for both quantifiers and Boolean connec-
tives. Our technique Fine-grained Strategy Improvement uses the fine-grained
structure of LA formulas to formulate a recursive procedure that iteratively
improves a candidate strategy via computing winning strategies to induced sub-
games. We generalize the notion of strategies and counter-strategy computation
from Farzan and Kincaid [8] to handle quantifiers and connectives as well as al-
lowing computing counter-strategies with a fixed prefix (to enable the recursive
nature of fine-grained strategy improvement). Fine-grained strategy improve-
ment improves upon existing techniques by (1) avoiding conversion to prenex
normal form or (2) allowing extraction of a proof object (a winning strategy)
that determines exactly how the formula is proven to be (un)satisfiable.

For simplicity, the remainder of this paper provides details for linear rational
arithmetic (LRA); however, the algorithmic details and game semantics provided
in this paper are directly applicable to any theory that admits an appropriate
term-selection function (cf. Section 5.1) including linear integer arithmetic (LIA).
In section 2, we review the game semantics for linear arithmetic [12], and its
relation with LRA satisfiability. Sections 3, 4, and 5 present the procedure to
compute winning strategy skeletons, whose existence proves or disproves LRA
satisfiability. Section 6 shows how to compute a winning strategy from a strategy
skeleton. Sections 7 and 8 compares this work to others. The Appendix3 contains
implementation details, proofs, and extended experimental results.

2 Fine-grained Game Semantics for LRA Satisfiability

This section reviews the syntax (Section 2.1) of Linear Rational Arithmetic
(LRA) and its game semantics (Section 2.2).

2.1 Linear Rational Arithmetic

The syntax of LRA is formed from two sets—Terms and Formulas. The grammar
for terms and formulae parameterized over a set of variables X is as follows:

s, t ∈ Term(X) ::= c ∈ Q | x ∈ X | s+ t | c · t
φ, ψ ∈ Formula(X) ::= t < 0 | t = 0 | φ ∧ ψ | φ ∨ ψ | ∀x. φ | ∃x. φ

Without loss of generality, this paper considers negation free formulae and
assumes that every variable bound by a quantifier within a formula to be distinct.
For a formula φ, FV (φ) denotes its free variables. Similarly, FV (t) denotes the
free variables of term t. A sentence is a LRA formula with no free variables. A
ground formula is a quantifier-free formula which may contain free variables.

A valuation, M : V → Q, maps a finite set of variables, V ⊆ X, to the
rationals. We use JtKM to denote the value of t within the valuationM—assuming

3 The extended version of this paper is available at https://pages.cs.wisc.edu/

~tcmurphy4/docs/fine_grained_strategy_synthesis.pdf.

https://pages.cs.wisc.edu/~tcmurphy4/docs/fine_grained_strategy_synthesis.pdf
https://pages.cs.wisc.edu/~tcmurphy4/docs/fine_grained_strategy_synthesis.pdf

4 C. Murphy and Z. Kincaid

FV (t) ⊆ dom(M)—with the usual interpretation. M |= φ denotes that M
satisfies the formula φ (we say M is a model of φ).

For a valuationM , a variable x, and a rational constant c,M{x 7→ c} denotes
the valuation M except with x mapped to c.

M{x 7→ c} ≜ λy.if y = x then c else M(y)

For a formula φ, variable x, and term t, φ[x 7→ t] represents the formula
obtained by substituting every free occurrence of x with t.

2.2 Fine-grained Game Semantics

For a more thorough introduction, Hintikka describes the game semantics for
first-order formulae [12]. Every LRA sentence defines a satisfiability game, which
is played between two players: SAT and UNSAT. The players take turns choos-
ing instantiations for quantifiers and sub-formulae of connectives. SAT controls
the choices for existential quantifiers and disjunctions, while UNSAT controls
universal quantifiers and conjunctions.

Formally, a state of a LRA-satisfiability game for a LRA-sentence φ isG(ψ,M),
where ψ is a sub-formula of φ and M is a valuation. The initial state of the sat-
isfiability game for φ is G(φ, ∅). Below gives the rules of the game with the
assumption that FV (ψ) ⊆ dom(M).

G(t < 0,M) SAT wins if M |= t < 0 . Otherwise, UNSAT wins.

G(t = 0,M) SAT wins if M |= t = 0 . Otherwise, UNSAT wins.

G(φ ∧ ψ,M) UNSAT chooses to either play G(φ,M) or G(ψ,M).

G(φ ∨ ψ,M) SAT chooses to either play G(φ,M) or G(ψ,M).

G(∀x.φ,M) UNSAT picks c ∈ Q and then plays G(φ,M{x 7→ c}).
G(∃x.φ,M) SAT picks c ∈ Q and then plays G(φ,M{x 7→ c}).

A strategy for SAT or UNSAT determines that player’s next move as a
function of all the moves previously played. In the above definition of a LRA-
satisfiability game, the state G(ψ,M) implicitly represents the moves made so
far. This is made explicit by representing a play of the game as a sequence of
rational numbers (instantiating quantifiers) and the labels L and R (choosing
the left or right branch of a disjunction or conjunction). For the formula φ and
play π, we represent the sub-formula and valuation forming the state of the game
after playing π as φπ and mπ, respectively. Both are defined as follows:

φϵ ≜ φ (∀x.φ)c·π ≜ φπ (∃x.φ)c·π ≜ φπ

M ϵ ≜ ∅ M c·π ≜Mπ{x 7→ c} M c·π ≜Mπ{x 7→ c}

(φ ∧ ψ)L·π ≜ φπ (φ ∧ ψ)R·π ≜ ψπ (φ ∨ ψ)L·π ≜ φπ (φ ∨ ψ)R·π ≜ ψπ

ML·π ≜Mπ MR·π ≜Mπ ML·π ≜Mπ MR·π ≜Mπ

QLA Satisfiability Via Fine-grained Strategy Improvement 5

If φπ does not evaluate using the above rules, then π is an illegal play and
φπ is undefined. In the remainder of this paper, we use “play” to mean “legal
play.” A play π is complete when φπ is an atom (neither player has any move
to make). For any complete play π, SAT wins if and only ifMπ |= φπ. Similarly,
UNSAT wins if and only if Mπ ̸|= φπ.

For any formula φ, ¬φ denotes the negation-free formula equivalent to the
negation of φ. The sentence ¬φ, induces the dual satisfiability game of φ – a
game played in the same manner as φ but with the roles of SAT and UNSAT
swapped. This duality is used to define terminology and algorithms explicitly
for SAT and implicitly for UNSAT as the corresponding SAT version for ¬φ.

Definition 1 (Strategy). Let M = Q ∪ {L,R} be the set of all moves, f :
M∗ → M be a partial function from sequences of moves to a move, and π a
sequence of moves. The play π conforms to f exactly when πi = f(π1, . . . , πi−1)
whenever f(π1, . . . , πi−1) is defined.

Let φ be a LRA-sentence, a SAT strategy for φ is a partial function f :
M∗ →M , which has the property that for any play π that conforms to f , (1) if
φπ is F ∨G then f(π) is defined and f(π) ∈ {L,R} and (2) if φπ is ∃x.F then
f(π) is defined and f(π) ∈ Q.

The SAT strategy f is winning if every complete play that conforms to f
is won by SAT. It is well-known that φ is satisfiable if and only if SAT has a
winning strategy.

3 Fine-grained Strategy Skeletons

This section defines fine-grained SAT strategy skeletons that form the basis
of our fine-grained strategy improvement algorithm (cf. Algorithm 1). A SAT
strategy skeleton is an abstraction that represents multiple possible strategies
that SAT may choose. Recall that in Section 2.2, we defined strategies to be a
function that maps a play of a satisfiability game to the next move of the game. A
strategy skeleton similarly maps a play of the satisfiability game to a finite set of
possible moves to play next. At a high-level, the strategy improvement algorithm
iteratively finds better and better strategy skeletons via the computation of
counter-strategy skeletons (cf. Section 5).

Example 1. To illustrate fine-grained strategy skeletons and the algorithms pre-
sented in this paper consider the formula φ which we use as a running example
throughout this paper:

φ ≜ ∀x, z. (x = z ∨ (∃y. (x < y ∧ y < z) ∨ (z < y ∧ y < x)))

•

•

L

∀x̄

∀z̄

x̄ = z̄

The formula φ expresses the fact that for any pair of rational
numbers x and z, either x and z are equal or there is some value y
between x and z. To the right, we display a SAT strategy skeleton
for φ which we call S. The two • symbols act as placeholders for
the values chosen by UNSAT for the quantified variables x and z.

6 C. Murphy and Z. Kincaid

The skeleton encodes that no matter what values (x̄ and z̄) UNSAT
chooses to instantiate x and y with, SAT chooses to play the left branch of the
disjunction leading to the atom x = z—at the end of the path we display x̄ = z̄,
which is this atom after substituting the placeholder values for UNSAT’s choice
for the formally bound variables.

As seen in Examples 1 and 4, SAT skeletons are tree-like structures that fol-
low the structure of φ. Formally, SAT strategy skeletons for a LRA-satisfiability
game φ, are represented as a set of paths. We use SKEL(φ, vars) to denote the set
of SAT strategy skeletons for φ whose terms may range over the set of variables
vars. For a sub-skeleton of a sentence, vars represents the set of variables that
in-scope in φ. The set of strategy skeletons for a sentence is thus SKEL(φ, ∅).
For a set of paths S, ℓ·S = {ℓ·π : π ∈ S} denotes the set obtained by prepending
each path in S with the label ℓ. Similarly, we define π ⇓ S = {π′ : π · π′ ∈ S}
to be the set of suffixes of π appearing in S. Formally, a skeleton is a subset
of (Term(X)∪ {•, L,R})∗ (whose specific form depends on the formula φ). We
define SKEL as the least solution to the following set of rules:

φ is atomic

{ϵ} ∈ SKEL(φ, vars)

S ∈ SKEL(φ, vars)

L · S ∈ SKEL(φ ∨ ψ, vars)
S ∈ SKEL(ψ, vars)

R · S ∈ SKEL(φ ∨ ψ, vars)

S ∈ SKEL(φ, vars) T ∈ SKEL(ψ, vars)

(L · S) ∪ (R · T) ∈ SKEL(φ ∧ ψ, vars)
S ∈ SKEL(φ, vars ∪ {x})
• · S ∈ SKEL(∀x. φ, vars)

t ∈ Term(vars) S ∈ SKEL(φ, vars ∪ {x})
(t · S) ∈ SKEL(∃x. φ, vars)

S, T ∈ SKEL(φ, vars)

(S ∪ T) ∈ SKEL(φ, vars)

Just as strategies can be thought of as a collection of plays, strategy skeletons
can be thought of as a collection of strategies. Similar to strategies and plays,
we can determine when a strategy conforms to a strategy skeleton. We say a
SAT strategy f conforms to a strategy skeleton S when every complete play π
conforming to f conforms to S. A play π conforms to S, if there is some path
ρ ∈ S such that |π| = |ρ| and for each i we have (1) φπ0,...,πi−1 = ∃x.ψ for some
ψ and JxKM

π

= JρiKM
π

, or (2) φπ0,...,πi−1 is a disjunctive or conjunctive formula
and πi = ρi, or (3) φ

π0,...,πi−1 is a universally quantified formula and ρi = •. A
strategy skeleton is winning if there is a winning strategy that conforms to it.

In order to develop a decision procedure that produces a winning strategy
skeleton, we first turn to the problem of determining if a SAT skeleton S for
the LRA satisfiability game G(φ,M) is winning. To determine if S wins the
game G(φ,M) we check if the losing formula lose(S, φ) is not satisfied by M
(i.e., S wins G(φ,M) if M ̸|= lose(S, φ)). This formulation results in a formula
that is existentially quantified and can be easily Skolemized to a quantifier free
formula and checked with an off-the-shelf SMT solver. Furthermore, we show in
Section 5 that a model of the Skolemized formula can be used to construct an

QLA Satisfiability Via Fine-grained Strategy Improvement 7

UNSAT strategy skeleton for φ that beats S. We define lose(S, φ) as follows:

lose(∅, φ) ≜true

lose({ϵ}, φ) ≜¬φ
lose(S, φ ∨ ψ) ≜lose(L ⇓ S, φ) ∧ lose(R ⇓ S, ψ)
lose(S, φ ∧ ψ) ≜lose(L ⇓ S, φ) ∨ lose(R ⇓ S, ψ)

lose(S, ∃x.φ) ≜
∧

t·π∈S

lose(t ⇓ S, φ)[x 7→ t]

lose(S, ∀x.φ) ≜∃x.lose(• ⇓ S, φ)

If M satisfies the losing formula lose(S, φ), then S is not a winning strategy
skeleton for the game G(φ,M). Intuitively, this implies that UNSAT can beat
SAT if SAT plays according to any strategy conforming to S. We use the intuition
to formalize when an UNSAT strategy skeleton U beats the SAT skeleton S.

Definition 2 (Counter Strategy). Fix a LRA-satisfiability game φ, play π
of φ, SAT skeleton S for φπ, and UNSAT skeleton U for φπ. U is a counter-
strategy of S (U beats S), if there is some strategy g conforming to U such
that for every strategy f conforming to S, UNSAT wins every complete play ππ′

such that π′ conforms to both f and g.

Crucially, it cannot be the case that U beats S and S beats U . This asymme-
try is ensures that the strategy improvement algorithm makes progress towards
verifying or falsifying the formula φ.

Example 2. Recall the initial strategy S from Example 1,
U

0

1

∧L R

•

∧L R

L L

∃x

∃z

∀ȳ0 ̸= 1

0 ≥ ȳ 1 ≥ ȳ

in which SAT always chose the branch with the atom
x = z no matter what values UNSAT chose for x and z.
The losing formula of S is lose(S) ≜ x̄ ̸= z̄ which summa-
rizes the choices of x̄ and z̄ that UNSAT may make to fal-
sify the atom x = z SAT choose. The losing formula of S
is satisfiable—e.g., with the model M = {x̄ 7→ 0, z̄ 7→ 1}.
Since the losing formula is satisfiable, there must be some
counter-strategy that beats S. One such counter-strategy
U is depicted to the right—remember that the UNSAT
strategy U is a SAT strategy to the formula ¬φ. As in
Ex. 1, U is annotated with additional labels: terms are
labeled with the existential quantifier they are instantiat-
ing, each • is annotated with the corresponding Skolem
constants from lose(S, φ), and conjunctions are grouped and highlighted to vi-
sually distinguish conjunctive branches from disjunctive branches. Finally, each
leaf of the skeleton is labeled with the atomic formula reached after substituting
the terms and Skolem constants for each quantified variable.

The skeleton U states that UNSAT will always choose 0 to instantiate x and
1 to instantiate z. If SAT chooses the left branch, then the play is over and

8 C. Murphy and Z. Kincaid

Algorithm 1: Satisfiability modulo LRA

Function Solve(φ,Mπ,S)
Input: LRA Formula φ = ψπ for

some sentence ψ.
Valuation Mπ : (x0, . . . , xn)→ Q such
that FV (φ) ⊆ dom(Mπ).
S a SAT skeleton for φ.
switch has-counter-strategy(S, Mπ, φ) do

case Counter-strategy U do
⟨π′, U ′⟩ ← peel(φ,U);

switch Solve(¬φπ′
, Mπ ∪Mπ′

, U ′) do
case Sat U ′′ do

return Unsat π′ · U ′′

case Unsat S′ do
return Solve(φ, Mπ, S ∪ (¬π′) · S′)

case default do
return Sat S

Function Strategy-Improvement(φ)
Let S ∈ SKEL(φ, ∅) be any skeleton
for φ;

switch Solve(φ, λx. ⊥, S) do
case Sat S′ do

return true
case Unsat U do

return false

UNSAT wins. Otherwise, SAT chooses the right branch and a symbolic value ȳ
to instantiate y. Then SAT chooses to either play the left or right branch of the
resulting sub-game. If SAT chose left then UNSAT will chose to play the left
sub-game and the play ends in the atom 0 ≥ ȳ. Otherwise, when SAT plays the
right sub-game, UNSAT chooses to play the resulting left sub-game and play
ends in the atom 1 ≥ ȳ.

Proposition 1. Let S be a SAT strategy for the game G(φ,M). S is winning
if and only if M |= lose(S, φ).

4 Fine-grained Strategy Improvement

This section presents an algorithm for deciding LRA satisfiability (Algorithm 1).
At a high level, the algorithm produces a winning strategy skeleton via fine-
grained strategy improvement. Algorithm 1 iteratively improves the current
player (SAT)’s strategy. Each iteration attempts to compute a counter-strategy
for the opposing player (UNSAT), fixes the opposing player’s initial moves and
recursively solves the resulting sub-game. If the opposing player wins the sub-
game, then they win the game, and a winning strategy can be constructed using
the synthesized initial moves and the winning strategy for the subgame. If the
opposing player loses the subgame, the current player’s winning strategy for the
subgame is used to improve their strategy. The algorithm then proceeds to the
next iteration of the current game and repeats until a winning player can be
determined.

Algorithm 1 assumes that UNSAT makes the first move in the game G(φ,M).
If SAT would instead play first, Algorithm 1 may be applied to ¬φ and the result
negated. The first step of the strategy improvement algorithm initializes a SAT
skeleton. Any SAT skeleton S ∈ SKEL(φ, ∅) may be used.

QLA Satisfiability Via Fine-grained Strategy Improvement 9

After initialization, the algorithm will check if a counter-strategy exists (cf.
Section 5). If there is no counter-strategy, then necessarily SAT’s current skeleton
S must be winning. Otherwise, UNSAT has a counter-strategy U that beats S.
The auxiliary function peel uses φ and U to compute π′—the leading universal
and conjunctive moves—and U ′—the remaining skeleton (i.e. U = π′ · U ′). The
algorithm continues by fixing the moves in π′ and having the players swap places
while solving the resulting sub-game ¬φπ′

. Formally, peel is defined as follows:

peel(∀x.F, U) ≜
〈
t · π, U ′〉 where

〈
π, U ′〉 = peel(F,U ′′) and U = t · U ′′

peel(F ∧G,U) ≜
〈
L · π, U ′〉 where

〈
π, U ′〉 = peel(F,U ′′) and U = L · U ′′

peel(F ∧G,U) ≜
〈
R · π, U ′〉 where

〈
π, U ′〉 = peel(G,U ′′) and U = R · U ′′

peel(φ,U) ≜ ⟨ϵ, U⟩ otherwise

By construction, the leading UNSAT moves of a counter-strategy must form
a single path—Algorithm 3 only chooses a single term or conjunct when con-
structing a counter-strategy. This ensures that peel is properly defined. After
peeling off the leading universal and conjunctive moves from U , the algorithm
recursively solves the resulting sub-game (from the point-of-view of UNSAT by
recursing on ¬φπ′

instead of φπ′
).

After the recursive call, either SAT or UNSAT has a winning skeleton to
G(¬φπ′

,Mπ′
). If SAT wins G(¬φπ′

,Mπ′
) with the skeleton U ′′, then UNSAT

must win G(φπ′
,Mπ′

) with the UNSAT skeleton U ′′. Since UNSAT controls the
initial moves π′, we may conclude that UNSAT wins the entire game G(φ,M)
and return the winning UNSAT skeleton π′ · U ′′.

Otherwise, UNSAT winsG(¬φπ′
,Mπ′

) with the skeleton S′. The sub-skeleton
S′ can be extended to counter U by prepending every path of S′ with the “nega-
tion” of π′ the initial moves of UNSAT. Note that by construction, π′ consists
only of terms instantiating universal quantifiers or L or R denoting a choice
of a conjunctive branch. We define the negation of π′ as follows: each term in
π′ is replaced with a •—i.e. (¬π′)i = π′

i if π′
i ∈ {L,R}, otherwise (¬π′)i = •.

Technically, (¬π′) ·S′ is not a skeleton when π′ contains conjunctive moves—the
resulting set of paths only covers one of the branches, while a SAT skeleton must
cover both branches of a conjunction—however, when unioned with S the initial
skeleton for SAT, the final result is a skeleton that counters U .

10 C. Murphy and Z. Kincaid

Example 3. U

0

1
π′

U ′

∧L R

•

∧L R

L L

∃x

∃z

∀ȳ0 ̸= 1

0 ≥ ȳ 1 ≥ ȳ

•

•

R

x̄+z̄
2

L

¬π′

S′

∧L R

∀x̄

∀z̄

∃y

x̄ < x̄+z̄
2

x̄+z̄
2 < z̄

S1 = S ∪ (¬π′) · S′

•

•

L R

x̄+z̄
2

L

∧L R

∀x̄

∀z̄

∃y
x̄ = ȳ

x̄ < x̄+z̄
2

x̄+z̄
2 < z̄

Continuing Example 1, let us suppose that we begin Algorithm 1 with the
SAT strategy skeleton S depicted in Example 1 (which simply takes the left
branch of the disjunction). S is not winning, since the UNSAT player may choose
different values for x and z to invalidate the equality—one such counter-strategy
U for S appears above. After using peel to construct π′ and U ′, Algorithm 1
recursively solves the sub-game ¬φπ′

≜ x ̸= z ∧ ∀y. (x ≥ y) ∨ (y ≥ z) ∧ (z ≥
y) ∨ (y ≥ x) starting with U ′ and the model Mπ′

= {x 7→ 0, z 7→ 1}. The sub-
game is played with the role of the two players switched—the recursive call uses
the formula ¬φπ′

rather than φπ′
—thus, U ′ is a SAT skeleton for the resulting

sub-game and the assumption that the top-level connective of φ is controlled by
UNSAT is maintained.

The recursive call returns that UNSAT won the game G(¬φπ′
,Mπ·π′

) with
the skeleton S′. The skeleton S′ will instantiate y with the average of x and z
and chose the left disjunct x < y < z, which clearly beats U ′ when x is 0 and z
is 1.

U1

1

0

π′
1

U ′
1

∧L R

•

∧L R

L L

∃x

∃z

∀ȳ1 ̸= 0

1 ≥ ȳ 0 ≥ ȳ

•

•

R

x̄+z̄
2

R

¬π′
1

S′
1

∧L R

∀x̄

∀z̄

∃y

z̄ < x̄+z̄
2

x̄+z̄
2 < x̄

S2 = S1 ∪ (¬π′
1) · S′

1

•

•

L R

x̄+z̄
2

L R

∧L R ∧L R

∀x̄

∀z̄

∃y
x̄ = ȳ

x̄ < x̄+z̄
2

x̄+z̄
2 < z̄ z̄ < x̄+z̄

2
x̄+z̄
2 < x̄

While S1 counters U , it is not yet winning. SAT will lose any play where
UNSAT instantiates x and z such that z < x. On the next iteration of the game
the algorithm finds U1 a counter-skeleton to S1. Just as before the procedure
splits apart U1 and solves the induced sub-game. The procedure finds that SAT
wins the sub-game with the skeleton S′

1. The new skeleton is extended and
combined with S1 to form S2 and the current game φ continues starting from

QLA Satisfiability Via Fine-grained Strategy Improvement 11

Algorithm 2: Check if a given strategy skeleton has a counter-strategy

Function has-counter-strategy(S, M0, φ)

Input: LRA formula φ.
Valuation M0 : (x0, . . . , xn)→ Q s.t.
FV (φ) ⊆ dom(M0)
S a SAT strategy skeleton for φ
foreach π such that π • π′ ∈ S for some π′ do

H[π•]← fresh rational variable
foreach π such that πLπ′ ∈ S for some π′ and
φπ is a conjunction do

H[πL]← fresh Boolean variable
H[πR]← fresh Boolean variable

lose ← true

foreach π ∈ S do
win ← φπ{x 7→M0(x) : x ∈ dom(M)}
conds ← true
for i← |π| to 1 do

π′ ← π1, . . . , πi−1

if φπ′
= F ∧G then

conds ← conds ∧ (win⇒ H[π′ · πi])
win ← H[π′ · L] ∧H[π′ ·R]

else if φπ′
= ∃x.F then

win ← win[x 7→ πi]
conds ← conds[x 7→ πi]

else if φπ′
= ∀x.F then

win ← win[x 7→ H [π′•]]
conds ← conds[x 7→ H [π′•]]

lose ← lose ∧ (¬win) ∧ conds
if lose is satisfiable then

Let M be an extension of M0 satisfying lose
⟨U,G⟩ ← CSS(φ,M,M0, ϵ, S)
return Counter-strategy U

return None

S2; however, on the next iteration, the procedure determines that S2 has no
counter-strategy and is thus a winning SAT skeleton for the game φ.

Theorem 1. Algorithm 1 is a decision procedure for LRA satisfiability.

5 Computing Counter-Strategies

When a strategy skeleton is not winning—its losing formula is satisfiable—the
opposing player must have a counter-strategy that beats every strategy that
conforms to the strategy skeleton. Given a model of the losing formula, this
section shows how to construct such a counter-strategy skeleton.

At a high level, Algorithm 1 uses Algorithm 2 to (1) determine if a strategy
skeleton S is winning and (2) if S is not winning to return a counter-strategy
U that beats S (and returning none if S is winning). Given a LRA satisfiability
game G(φ,M) and skeleton S, Algorithm 2 computes (a formula equisatisfiable
to) lose(S, φ), then uses Algorithm 3 to synthesize a counter-strategy to S if
lose(S, φ) is satisfied by M .

Algorithm 2 first constructs the losing formula. The first step of which in-
troduces a new Herbrand constant for each path to a universal quantifier and
a fresh Boolean variable for each path to a conjunct within φ. The produced
formula is equisatisfiable to the losing formula described in Section 3. By ex-
istentially quantifying the introduced Boolean variables and Skolem constants
lose becomes logically equivalent to lose(S, φ). The introduced Boolean variables
enable an explicit encoding of UNSAT’s choice of conjunct within the losing for-
mula. This allows a model of the losing formula (if one exists) to explicitly track

12 C. Murphy and Z. Kincaid

Algorithm 3: Constructing a counter-strategy

Function CSS(φ, M , Mπ, π, S)

Input: LRA formula φ.
Valuation M : Image(H)→ (Q ∪ B)

with M |= lose(φπ, S)
Valuation Mπ : (x0, . . . , xn)→ Q s.t.
FV (φπ) ⊆ dom(Mπ)

π a path fixing SAT’s initial moves
S the strategy skeleton for φπ

Output: ⟨U,F ⟩ where Mπ |= F and
U is an unsat skeleton that beats S on
G(φπ,M ′) for any M ′ satisfying F
if S = ∅ then

return ⟨Any skel ∈ SKEL(¬φπ, dom(Mπ)),⊤⟩
else if φπ is atomic then

return ⟨{ϵ},¬φπ⟩
else if φπ = φl ∧ φr then

if ¬JH[π · L]KM then
⟨Ul, Fl⟩ ← CSS(φl,M,Mπ, π · L,L ⇓ S)
return ⟨L · Ul, Fl⟩

else
⟨Ur, Fr⟩ ← CSS(φr,M,Mπ, π ·R,R ⇓ S)
return ⟨R · Ur, Fr⟩

else if φπ = φl ∨ φr then
⟨Ul, Fl⟩ ← CSS(φl,M,Mπ, π · L,L ⇓ S)
⟨Ur, Fr⟩ ← CSS(φr,M,Mπ, π ·R,R ⇓ S)
return ⟨(L · Ul) ∪ (R · Ur), Fl ∧ Fr⟩

else if φπ = ∀x.φ′ then
Mπ• ←Mπ{x 7→ JH[π•]KM}
⟨U,F ⟩ ← CSS(φ′,M,Mπ•, π•, • ⇓ S)
t← select(Mπ•, x, F)
return ⟨t · U,F [x 7→ t]⟩

else if φπ = ∃x.φ′ then
U ← ∅
G← true
foreach t such that t · π′ ∈ S for some π′ do

Mπ·t ←Mπ{x 7→ JtKM
π

}〈
U+, F+

〉
← CSS(φ′,M,Mπ·t, π · t, t ⇓ S)

F ← F ∧ (F+[x 7→ t])
U ← U ∪ U+

return ⟨•U,F ⟩

which branch UNSAT has a counter-strategy for. The algorithm computes the
losing formula on a path-by-path basis. It does so by computing when SAT could
win the given path and taking its negation (i.e., (¬win)∧ conds). We use win to
denote if the path could be won by SAT—note that for conjunctions SAT must
be able to win both of the conjuncts—and conds to constrain the introduced
Boolean variables (i.e., H(π) represents if the sub-skeleton rooted at π is win-
ning). After constructing lose, Algorithm 2 checks if the formula is satisfiable. If
lose is unsatisfiable, then S is a winning skeleton for the (sub-)game φ and has
no counter-strategy. Otherwise, there is a model of lose, that can be used with
Algorithm 3 to produce an UNSAT skeleton that beats S.

Algorithm 3 recursively decomposes S and φ to produce a counter-strategy.
Before recursing, a model of the bound variables (Mπ) and the path-prefix π is
constructed. For universals, the valuation is extended using the model of lose,
and for existentials the valuation is extended by evaluating the term instantiating
the quantifier using the model of the previously bound variables. To ensure that
the recursive call produces a counter-skeleton that beats the sub-skeleton of S,
M must be a model of the losing formula of the sub-skeleton. Whenever φ is
not conjunctive this is trivially true, as lose(φ, S) is a conjunction of the losing
formulae for the sub-skeletons. This ensures that the model of the parent formula
is also a model of all sub-formulae. In the case when φ is a conjunction, the
Boolean variables introduced to construct the losing formula determine which of
the subformulae are also modeled byM . If the introduced Boolean variable for a
given conjunct is false in the model M , then it must be that the given conjunct
also evaluates to false in the given model. This condition ensures that M is also
model of the losing formula of the sub-skeleton and thus that the recursive call
computes a counter-strategy to the given sub-skeleton. The algorithm then goes
back up and constructs a counter-strategy. For atomic formula, there is only

QLA Satisfiability Via Fine-grained Strategy Improvement 13

one possible strategy, the empty strategy. For conjuncts, the counter-strategy
simply extends a counter-strategy for the left or right branch of the conjunct
depending on which branch has a counter-strategy in model M—it is possible
both have a counter strategy in modelM , taking either or both counter-strategies
produces a counter-strategy. For disjunctions, a counter-strategy combines a
counter-strategy for both the left and right disjuncts. If the strategy S only takes
one of the two branches, then any skeleton for the disjunct may be returned. For
universal quantifiers, we use model based term selection to select a term t to
instantiate x such that t satisfies the same atoms of G within the given module
Mπ• (cf. Section 5.1). For existentials, we construct a counter-strategy as the
union of a counter-strategy for each choice SAT had made.

5.1 Term Selection

When generating a counter-strategy, Algorithm 3 makes use of the auxiliary
function select to select a term t to instantiate x. The function select is a
(model-guided) term selection function [8].

Given a formula F , a variable x ∈ FV (F) free in F , and a model M |= F
of F , we require select(M,x, F) to return a term t over the free variables of
F excluding x (i.e., FV (t) ⊆ FV (F) \ {x}) such that M satisfies F when t is
substituted for x (i.e.,M |= F [x 7→ t]). Furthermore, to ensure that Algorithm 1
is a decision procedure, we require that for any formula F and variable x ∈
FV (F) select has finite image (i.e., the set {select(M,x, F) : M |= F} is
finite).

For LRA, we define select as follows. Without loss of generality, we assume
that any atom of F that contains x is written as x = s, x < s, or x > s for some
s. Let EQ(M,x, F) contain the term s if and only if x = s is an atom of F and
JxKM = JSKM . Similarly UB(M,x, F) contains the term s if and only if x < s is
an atom of F and JxKM < JsKM . Finally, let LB(M,x, F) contain the term s if
and only if x > s is an aotm of F and JxKM > JsKM . Furthermore, if EQ(M,x, F)
is not empty, let eq(M,x, F) be any s ∈ EQ(M,x, F). If UB(M,x, F) is not
empty, then let lub(M,x, F) be a term s ∈ UB(M,x, F) such that for any
other s′ ∈ UB(M,x, F), JsKM ≤ Js′KM . Similarly, if LB(M,x, f) is not empty,
then let glb(M,x, F) be a term s ∈ LB(M,x, F) such that for any other s′ ∈
LB(M,x, F), JsKM ≥ Js′KM .

select =



eq(M,x, F) if EQ(M,X,F) ̸= ∅
1
2
(lub(M,x, F) + glb(M,x, F)) if UB(M,x, F) ̸= ∅ and LB(M,x, F) ̸= ∅

lub(M,x, F)− 1 if UB(M,x, F) ̸= ∅
glb(M,x, F) + 1 if LB(M,X,F) ̸= ∅
0 otherwise

For further details on model-guided term selection (including term selection
for linear integer arithmetic), we refer the reader to Farzan and Kincaid [8]. While
this paper so far has focused on satisfiability of LRA, we note that Algorithm 1
is a decision procedure for any theory that admits a term selection function
with finite image. In fact, the only change required is to swap select with an
appropriate term selection function for the desired theory.

14 C. Murphy and Z. Kincaid

6 Synthesizing Fine-grained Strategies

Section 4 presents an algorithm that computes a winning strategy skeleton that
either proves or refutes satisfiability of a LRA sentence. This section shows how
to generalize the technique of [8] to compute a winning fine-grained strategy
from a winning fine-grained strategy skeleton. As described in Section 2 a SAT
strategy is a function from plays to either a rational number (for existential
quantifiers) or the labels L and R (for disjunctions).

Strategies vs Skeletons. In Sections 3, 4, and 5, our techniques and discussion
focused on how to compute a winning strategy skeleton. While computing a
winning strategy skeleton is sufficient to determine satisfiability of a formula, it
may be insufficient for other tasks. For example for use in program verification
and synthesis tasks (e.g., to determinize non-deterministic choices, synthesize
safety conditions, etc.). By definition, a strategy skeleton S is winning if some
strategy g that conforms to S is winning.

Computing Winning Strategies. This section focuses on how to extract a winning
strategy from a winning strategy skeleton S for the game G(φ,M). To do so,
we construct a system of constrained horn clauses (CHCs) whose solution we
use to produce a winning strategy from a winning skeleton. The produced CHC
rules represent when the strategy skeleton is losing. Since the strategy skeleton
is winning, the rules are satisfiable and a model satisfying the CHCs exists. The
process starts by labeling each leaf of S with the atom reached, substituting
each of the terms instantiating existential quantifiers. Formally, for any path π
of S (from the root to a leaf), we label the leaf (rooted at π) with the formula
substφ(¬φπ, π). The function substφ applies a substitution based on the given
path in reverse order of the appearance of each existential quantifier.

substφ(G, ϵ) ≜ G

substφ(G, π · L) ≜ substφ(G, π)

substφ(G, π ·R) ≜ substφ(G, π)

substφ(G, π•) ≜ substφ(G, π)

substφ(G, π · t) ≜ substφ(G[x 7→ t], π) where φπ = ∃x.F

For a strategy skeleton S, define its nodes N = {π : ∃π′. ππ′ ∈ S} to be
prefixes of paths in S. Furthermore, define Succ : N → 2N to the set of im-
mediate suffixes. For each node π of S, we introduce an uninterpreted relation
Rπ(x1, . . . , xn) where x1, ..., xn = FV (φπ) are the free variables of φπ. We pro-

QLA Satisfiability Via Fine-grained Strategy Improvement 15

duce the following rules:

substφ(¬φπ, π) ⇒Rπ(. . .) if φπ is atomic(∨
π′∈Succ(π)

Rπ′(. . .)

)
⇒Rπ(. . .) if φπ is conjunctive

(∧
π′∈Succ(π)

Rπ′(. . .)

)
⇒Rπ(. . .) otherwise

Rϵ(x1, . . . , xn) ⇒x1 ̸=M(x1) ∨ · · · ∨ xn ̸=M(xn)

For each π ∈ N , Rπ represents the set of all M ′ such that π ⇓ S loses the
game G(φπ,M ′). Of note, the last rule requires that Rϵ does not containM (i.e.,
that S must win the game G(φ,M)). Since the overall skeleton is winning, the
rules are satisfiable. A solution for each relation Rπ may be computed using an
off-the-shelf CHC solver. Applying the negated solution as a guard for each path
of the skeleton, produces a winning strategy. Technically, the guards should be
determinized to produce a function; however, any such determinization will result
in a winning strategy. Formally, for each node π such that φπ is an existential
or disjunctive formula, we produce the function:

fπ(x1, ..., xk) if ¬Rπ′
1
then l1 elif . . . else lm

where FV (φφ) ≜ {x1, . . . , xk}, Succ(π) ≜ {π′
1, . . . , π

′
m}, and where each child

π′
i is reached with label li in S. Furthermore, for each path π ∈ (Q∪{L,R})∗ such

that φπ is an existential or disjunctive formula, define f ′(π) to be fπ(c1, . . . , cn)
where each ci =Mπ(xi) for each free variable xi ∈ FV (φπ). Finally define f(π)
to be f ′(π) if f ′(π) ∈ {L,R} and otherwise define f(π) to be Jf ′(π)KM

π

. The
function f is a stragegy conforming to S that wins the game G(φ,M).

Consider the winning skeleton S2 from Example 3. The left side of Example 4
shows the set of rules to label S2, depicted as a tree (whose shape follows exactly
from the shape of S2). The graph should be interpreted as saying that a node’s
label is implied by the combination of each of its children’s labels. For nodes 5
and 6, the labels of its children should be combined using disjunctive, otherwise,
the label of its children should be combined conjunctively. For example, the rule
for node 1, should be read as R2(x̄, z̄) ∧ R3(x̄, z̄) ⇒ R1(), while the rule for
node 5 should be read as R7(x̄, z̄) ∨ R8(x̄, z̄) ⇒ R5(x̄, z̄). The middle column
of Example 4 shows a possible solution to the set of rules, and the left-hand
side shows the winning strategy extracted from S2 using the given solution. The
strategy f•• states that given UNSAT’s choices of x̄ and z̄ to instantiate x and z,
if UNSAT chose equal values for x and y then SAT will chose the left branch—
which results in SAT’s immediate win—otherwise SAT will chose to play the
right branch. f••R and f••R x̄+z̄

2
are interpreted similarly.

16 C. Murphy and Z. Kincaid

Example 4.

Rules:

R0()

R1()

R2(x̄, z̄) R3(x̄, z̄)

R4(x̄, z̄)

R5(x̄, z̄) R6(x̄, z̄)

R7(x̄, z̄) R8(x̄, z̄) R9(x̄, z̄) R10(x̄, z̄)

x̄ ̸= z̄

x̄ ≥ x̄+z̄
2

x̄+z̄
2 ≥ z̄ z̄ ≥ x̄+z̄

2
x̄+z̄
2 ≥ x̄

Labels:

R0() 7→ ⊥
R1() 7→ R0()

R2(x̄, z̄) 7→ x̄ ̸= z̄

R3(x̄, z̄) 7→ x̄ = z̄

R4(x̄, z̄) 7→ x̄ = z̄

R5(x̄, z̄) 7→ x̄ ≥ x̄+z̄
2 ∨ x̄+z̄

2 ≥ z̄

R6(x̄, z̄) 7→ z̄ ≥ x̄+z̄
2 ∨ x̄+z̄

2 ≥ x̄

R7(x̄, z̄) 7→ x̄ ≥ x̄+z̄
2

R8(x̄, z̄) 7→ x̄+z̄
2 ≥ z̄

R9(x̄, z̄) 7→ z̄ ≥ x̄+z̄
2

R10(x̄, z̄) 7→ x̄+z̄
2 ≥ x̄

Strategy:

f••(x̄, z̄) ≜ if x̄ = z̄ then L else R

f••R(x̄, z̄) ≜
x̄+ z̄

2

f••R x̄+z̄
2
(x̄, z̄) ≜ if x̄ < z̄ then L else R

7 Experimental Evaluation

We extend the tool SimSat—a prototype implementation of the coarse-grained
strategy improvement algorithm from Farzan and Kincaid [9]—with the fine-
grained strategy improvement procedure4 SimSat is implemented in OCaml us-
ing Z3 [7] to handle ground formulas.

Our experiments aim to answer the following questions: (1) is fine-grained
SimSat competitive with state-of-the-art SMT solvers? (2) how much of the
difference between coarse-grained SimSat and fine-grained SimSat is driven by
considering non-prenex normal form formulas and how much is due to the new
strategy improvement algorithm? (3) what is the overhead of computing a win-
ning fine-grained strategy after checking satisfiability of a formula?

We compare fine-grained SimSat to coarse-grained SimSat as well as to Z3
(version 4.11.2) [7], CVC5 (version 1.0.0) [1], and YicesQS [11]. Z3 implements
the procedure from Bjørner and Janota [4], CVC5 implements the procedure
from Reynolds et al. [18], and YicesQS implements the procedure from Bonacina
et al. [5].

We evaluate each tool on three suites of benchmarks: SMT-LIB2, Termina-
tion, and Simulation. Each benchmark is described in detail below. All experi-
ments were conducted on a desktop running Ubuntu 18.04 LTS equipped with
a 4 core Intel(R) Xeon(R) processor at 3.2GHz and 12 GB of memory. Each
experiment was allotted a maximum of five minutes to complete.

To answer (1), fine-grained SimSat is compared to coarse-grained SimSat,
CVC5, YicesQS, and Z3. This section does not consider other solvers and meth-
ods (e.g. quantifier elimination) as Reynolds et al. [18], Bjørner and Janota [4],
and Bonacina et al. [5] show that their methods outperform other existing solvers
and methods for quantified LIA and LRA formulas. To answer (2) we consider
three variants of fine-grained SimSat. The first variant, “prenex,” first converts
the input formula to prenex-normal form before running the decision procedure.

4 The source code of SimSat and benchmarks can be found at https://github.com/
tm507211/srk/tree/cav2024-artifact.

https://github.com/tm507211/srk/tree/cav2024-artifact
https://github.com/tm507211/srk/tree/cav2024-artifact

QLA Satisfiability Via Fine-grained Strategy Improvement 17

(a) A cactus plot showing x instances solved within
y seconds per solver.

(b) Log-scale plot of strategy
synthesis time (y-axis) vs satis-
fiability time (x-axis).Fig. 1

The second variant, “miniscope,” miniscopes (reduces the scope of quantifiers)
the formula before running the decision procedure, and the final variant, “fine,”
applies the decision procedure without modifying the input formula. Finally, to
answer (3) we wish to measure the efficacy of our algorithm for strategy syn-
thesis, but we know of no other algorithm capable of synthesizing strategies for
fine-grained games with which to establish a baseline. Instead, we measure the
overhead of synthesizing a strategy on top of synthesizing a strategy skeleton.
SMT-LIB2. This suite of benchmarks consists of 2419 LRA and 616 LIA bench-
marks. All benchmarks come from SMT-LIB2 [3]. All LIA benchmarks come from
industrial problems. The LRA benchmarks consists of 1800 randomly generated
formulas in prenex normal form with varying quantifier depth (see Monniaux
[15] for detailed descriptions) and 619 industrial benchmarks.
Termination. This suite of benchmarks consists of 200 LIA formulas. The for-
mulas are derived from Zhu and Kincaid’s [21] method for proving termination
of programs (see Sections 5 and 6 for details on how formulas are constructed).
Each formula encodes a sufficient condition for which a program is terminating—
the program terminates if the formula is valid. The suite of benchmark consists
of a formula for each program in the “polybench” and “termination” benchmarks
from Zhu and Kincaid’s evaluation section [21].
Simulation. This suite of benchmarks consists of 2060 LIA formulas. The for-
mulas represent when the state of two integer message passing programs are
weakly similar for the next n instructions. For complete details see Chapter 4
of [16], which uses fine-grained strategy synthesis to determinize angelic choice
when proving weak simulation between two integer message passing programs.
Results. Table 1 and Figures 1a 1b summarize the results of the experiments.
Figure 1a is a cactus plot. Each line represents a solver’s performance. Each point
(x, y) within the line for a solver represents that x instances were individually
solved in under y seconds by the given solver. The closer the line is to the x-axis
the better the solver performed. Table 1 breaks down the results a little further
by (sub-)suite of benchmarks. Each entry shows the number of instances from
the given suite of benchmarks by the given solver. The “Any” column counts the
number of instances solved by any of the solvers, while the “All” column counts
the number of instances solved by every solver. The “total” column details the

18 C. Murphy and Z. Kincaid

Benchmarks Miniscope Fine Prenex Coarse CVC5 YicesQS Z3 Any All Total

Simulation 2060 2060 2060 2059 2059 1972 2060 2060 1972 2060
UltimateAutomizer 316 316 315 315 345 82 242 349 60 372
psyco 189 189 189 189 189 146 189 189 146 189
tptp (LIA) 46 46 46 46 46 42 46 46 42 46
Termination 200 200 200 196 195 0 166 200 0 200
All LIA 2811 2811 2810 2805 2834 2242 2703 2850 2220 2867

Mjollnir 1597 1584 1586 1578 1300 1800 1541 1800 1177 1800
keymaera 222 222 222 222 222 222 222 222 222 222
Scholl 372 373 372 373 362 374 372 374 359 374
tptp (LRA) 23 23 23 23 23 23 0 23 0 23
All LRA 2214 2202 2203 2196 1907 2419 2135 2419 1781 2419

All 5025 5013 5013 5001 4741 4661 4861 5269 4001 5286

Table 1: Number of instances solved per suite of benchmarks—
UltimateAutomizer, psyco, tptp, Mjollnir, keymaera, and Scholl are sub-
categories of SMT-LIB2.

total number of instances (solved and unsolved) within the suite of benchmarks.
For each suite of benchmark, bolded values highlight which solver(s) solved the
most instances of that set of benchmarks.

Overall, all solvers performed well. In fact, Figure 1a shows that all solvers
solved the first 4200 instances in under a second. The Figure zooms into the x-
axis after this point to highlight the differences between solvers. The experiments
show that the SimSat variants all behaved similarly and out-performed CVC5,
Z3, and YicesQS overall. Of the SimSat variants, the miniscoped variant per-
formed best, followed by the normal fine-grained variant, then the fine-grained
prenex variant and lastly the coarse-grained variant.

Looking into each suite of benchmarks further, Table 1 shows that while
YicesQS solved the fewest instances overall, it actually solved all LRA formulas.
Similarly, while CVC5 performed the worst on LRA, it was the best performer
on LIA instances, solving 23 more LIA instances than the miniscoped SimSat
variant—the next best performer. In both scenarios, the miniscoped SimSat
variant placed a close second. CVC5 performed well on the industrial bench-
marks; however, struggled with the randomly generated Mjollnir benchmarks,
perhaps due to the bottom-up instantiation strategy of its implemented deci-
sion procedure [18]. YicesQS excelled at the LRA formulas but failed to solve
many of the simulation and termination benchmarks. Overall, Z3 performed well
but struggled more with the UltimateAutomizer and Termination benchmarks—
benchmarks where conversion to prenex normal form increased quantifier alter-
nations significantly.

Finally, Figure 1b summarizes the cost of computing a winning fine-grained
strategy after checking satisfiability of the given formula—i.e. how much time
in seconds did it take to compute a winning strategy from a winning strategy
skeleton. Figure 1b, plots a point for each formula within the Simulation bench-
mark. A point has four associated values: (1) its x position represents how much
time is required to prove the formula Sat or Unsat (e.g. time to run “Fine”
SimSat variant), (2) its y position represents the amount of time in seconds re-
quired to compute a winning strategy from a winning strategy skeleton, (3) its

QLA Satisfiability Via Fine-grained Strategy Improvement 19

size visually quantifies the number of AST-nodes within the produced winning
strategy, and (4) a node is blue if the formula is won by SAT and red if it is won
by UNSAT. The smallest computed strategy consisted of a single node (move),
while the largest strategy consisted of 448 nodes. Across all instances, the it
took roughly 18.4% extra time to additionally compute a winning strategy over
just determining satisfiability of a formula. The maximum time to compute a
strategy is 1.4 seconds.

8 Discussion and Related Works

The closest techniques to Algorithm 1 are the QSMA algorithm of Bonacina et
al. [5] and the coarse-grained strategy improvement algorithm of Farzan and Kin-
caid [8]. Fine-grained and course-grained strategy improvement algorithms are
similar in that they both use model-based term selection to synthesize counter-
strategies to find better and better strategies for each player; however, they differ
in a few key ways. Fine-grained strategy synthesis works for formulae that are not
in prenex normal form. Additionally, while the coarse-grained strategy improve-
ment iterates between skeletons for the two players computing a counter-strategy
to the previous player’s most recent skeleton, the fine-grained strategy improve-
ment algorithm chooses a sub-game to focus on and solve before returning to
the current game. The coarse-grained algorithm iterates over “global” strate-
gies, where the fine-grained algorithm builds up a strategy by recursively solving
sub-games. While Algorithm 1 and QSMA share a similar high-level recursive
structure and used model-based techniques, the method of solving sub-formulae
differ. The QSMA algorithm uses over- and under-approximations to abstract
quantified sub-formulae when determining satisfiability of the current formula
whereas Algorithm 1 uses winning strategies of sub-games and model-based term
selection to synthesize counter-strategies and ultimately yield a winning strategy
to the current formula.

Algorithm 1 also shares some similarities with QSAT the quantified satis-
fiability algorithm of Bjørner and Janota [4] which is also based on the game
semantics of FOL. For formulas in prenex normal form, QSAT and Algorithm 1
both fix a strategy for the first quantifier and then recursively compute a strat-
egy for the remaining quantifiers and back-tracks if no winning strategy exists
for the current player; however, the notion of strategy used differs. In QSAT,
a strategy selects a subset of the literals in the formula—whose free variables
belong to the prefix of quantifiers already explored—that constrains the possible
strategies of the remaining quantifiers.

Finally, Algorithm 1 shares similarities with the counter-example instanti-
ation method of Reynolds et al. [18]. Both methods work for formulas beyond
prenex normal form and use model based projection techniques to instantiate
quantifiers; however, Algorithm 1 uses a top-down approach to synthesize win-
ning strategies, while counter-example instantiation uses a bottom-up technique
to instantiate and eliminate quantifiers one quantifier block at a time.

20 C. Murphy and Z. Kincaid

Other methods for LRA/LIA formulas include heuristic instantiation and
quantifier elimination. Heuristic instantiation is sound but incomplete and was
traditionally the method of choice for many SMT solvers (e.g. CVC4 [2]). Tra-
ditional quantifier elimination methods (e.g. Fourier-Motzkin elimination [14],
Ferrante-Rackoff [10], and Weispfenning [20] algorithms for LRA, and Cooper’s
algorithm [6], and Pugh’s Omega test [17] for LIA) are sound and complete for
LRA/LIA but are extremely costly. Monniaux developed a lazy quantifier elim-
ination method for LRA based on polyhedral projection that performs better in
practice [15]. However, Bjørner and Janota show that their algorithm dominates
the use of Monniaux’s method as a [4]. Finally, Komuravelli et al. [13] intro-
duced model-based projection which under-approximates quantifeir elimination
for LA and is closely related to the model-based term selection function we use
in Section 5.1.

Acknowledgements. This work was supported in part by the NSF under grant
number 1942537. Opinions, findings, conclusions, or recommendations expressed
herein are those of the authors and do not necessarily reflect the views of the
sponsoring agencies.

References

1. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., et al.: cvc5: a versatile and
industrial-strength smt solver. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 415–442. Springer (2022)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: Cvc4. In: International Conference on Computer Aided
Verification. pp. 171–177. Springer (2011)

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

4. Bjørner, N.S., Janota, M.: Playing with quantified satisfaction. LPAR (short pa-
pers) 35, 15–27 (2015)

5. Bonacina, M.P., Graham-Lengrand, S., Vauthier, C.: Qsma: a new algorithm for
quantified satisfiability modulo theory and assignment. In: International Confer-
ence on Automated Deduction. pp. 78–95. Springer (2023)

6. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Machine in-
telligence 7(91-99), 300 (1972)

7. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

8. Farzan, A., Kincaid, Z.: Linear arithmetic satisfiability via strategy improvement.
In: IJCAI. pp. 735–743 (2016)

9. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. Proceedings
of the ACM on Programming Languages 2(POPL), 1–30 (2017)

10. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM Journal on Computing 4(1), 69–76 (1975)

QLA Satisfiability Via Fine-grained Strategy Improvement 21

11. Graham-Lengrand, S.: Yices-qs 2022, an extension of yices for quantified satisfia-
bility (2022)

12. Hintikka, J.: Game-theoretical semantics: insights and prospects (1982)
13. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive

programs. Formal Methods in System Design 48, 175–205 (2016)
14. Kroening, D., Strichman, O.: Decision procedures. Springer (2016)
15. Monniaux, D.: Quantifier elimination by lazy model enumeration. In: International

Conference on Computer Aided Verification. pp. 585–599. Springer (2010)
16. Murphy, T.C.: Relational Verification of Distributed Systems Via Weak Simula-

tions. Ph.D. thesis, Princeton University (2023)
17. Pugh, W.: The omega test: a fast and practical integer programming algorithm for

dependence analysis. In: Supercomputing’91: Proceedings of the 1991 ACM/IEEE
conference on Supercomputing. pp. 4–13. IEEE (1991)

18. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by
counterexample-guided instantiation. Formal Methods in System Design 51(3),
500–532 (2017)

19. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in smt. In: Automated Deduction–
CADE-24: 24th International Conference on Automated Deduction, Lake Placid,
NY, USA, June 9-14, 2013. Proceedings 24. pp. 377–391. Springer (2013)

20. Weispfenning, V.: The complexity of linear problems in fields. Journal of symbolic
computation 5(1-2), 3–27 (1988)

21. Zhu, S., Kincaid, Z.: Termination analysis without the tears. In: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation. pp. 1296–1311 (2021)

22 C. Murphy and Z. Kincaid

Fig. 2: A plot relating the number of quantifier alternations in the original for-
mula (x-axis) to the number of quantifier alternations in the transformed for-
mulas (y-axis). Blue points represent miniscoping, and red points conversion to
prenex normal form. The size of each point’s radius scales logarithmically with
the frequency of the point (x, y).

A Implementation Details

In Algorithm 3, when countering a conjunction and both branches have a counter-
strategy in the given model, we arbitrarily chose the left branch. While it is
fine to choose either or both, Algorithm 1 assumes only one branch is chosen.
The implementation follows the choice made in Algorithm 3; however, other
options may incorporate some heuristic to choose between the branches when
both can produce a counter-strategy (e.g. choose the more “constrained” branch
or the branch with fewer quantifier alternations, etc.). The term selection func-
tion select in Algorithm 3, is the same as the one used in coarse SimSat—as
described in Farzan and Kincaid [8]. When Algorithm 1 and 3 chose any skele-
ton for a formula, the implementation initializes a formula using the hueristic
described in Section 4. Specifically, the implementation will first initialize an
UNSAT skeleton for φ that instantiates all universals quantifiers with 0 and al-
ways chooses the left branch of any conjunction. Then the implementation will
find a counter-strategy to the default initialized UNSAT skeleton.

B Extended Results Discussion

To better understand why the SimSat variants all performed similarly, we per-
formed a deeper analysis of the results, specifically looking into the “shape” of
the input formulas. In all but 640 of the instances, the input formula was pre-
sented in prenex normal form. Of the 640 instances not in prenex normal form,
the conversion to prenex normal form introduces a median of 2 extra quantifier
alternations on average. For formulas not in prenex normal form, the number of

QLA Satisfiability Via Fine-grained Strategy Improvement 23

alternations presented is the maximum number of quantifiers alternation along
any path of the formula’s AST. Miniscoping reduced the number of quantifier
alternations for 718 of the formulas. The median reduction resulted in 1 fewer
quantifier alternation. Figure 2 provides a more detailed picture relating the
number of quantifier alternations in the transformed formula to the number in
the original formula. Each red point (x, y) represents that the input formula had
x quantifier alternations, while it’s prenex conversion had y quantifier alterna-
tions. Blue points similarly relate the input formula to its miniscoped version.
Larger points represent a greater number of formulas at point (x, y). The graph
shows that most formulas have a point that falls on the line x = y, while the
remainder of the points typically have a frequence of 1. The figure shows that
while rare in these benchmarks, conversion to prenex normal form can yield
substantially more quantifier alternations.

C Proofs

Proposition 1. Let S be a SAT strategy for the game G(φ,M). S is winning
if and only if M |= lose(S, φ).

Proof. We first extend the definition of winning to skeletons for formulas with
free-variables.

Let φ be an LRA formula, M a valuation over the free variables of φ.

For any play π of φ, π is won by SAT from M if and only if Mπ ⊎M |= φπ.

Similarly, a SAT strategy f is winning fromM if and only if every complete play
conforming to f is won by SAT from M .

Lastly, a SAT skeleton S is winning from M if and only if there is a strategy
that conforms to S that is winning from M .

We now proceed to prove a more general theorem:
Let φ be a LRA sentence, M a valuation over the free variables of φ, and S

a SAT skeleton for φ. S is winning from M if and only if M ̸|= lose(S, φ).

We now proceed to prove the general theorem by induction on φ.
Case (φ is atomic). S must be {ϵ}, and lose({ϵ}, φ) = ¬φ.

Clearly, S is winning from M if and only if M ̸|= ¬φ.
Case (φ ∧ ψ). By construction S = (L · SL) ∪ (R · SR) for some SL and SR

Necessarily, M is a valuation for the free variables of both φ and ψ.
Case (⇒). By Assumption S is winning from M for φ ∧ ψ.

Necessarily, SL is winning from M for φ and similarly for SR and ψ. By
the IH, we may conclude that lose(SL, φ) and lose(SR, ψ) are not satisfied
by M . By definition, lose(S, φ ∧ ψ) = lose(SL, φ) ∨ lose(SR, φ). Thus, it
is also unsatisfied by M .

Case (⇐). By Assumption M ̸|= lose(S, φ ∧ ψ).
We may conclude that neither lose(SL, φ) nor lose(SR, ψ) are satisfied
by M . Using the IH, we conclude that SL is winning from M for φ and

24 C. Murphy and Z. Kincaid

similarly for SR and ψ. Since both branches of S are winning from m, S
must be winning from M .

Case (φ∨ψ). By construction, S = (L ·SL)∪ (R ·SR) for some SL and SR with

possibly one of SL or SR being empty.

Case (⇒). By assumption, S is winning from M .

By definition, there is some strategy f that conforms to S that is winning
from M . Let fL = f(π) for every path (L · π) ∈ dom(f). fR is similarly
defined. Either fL is empty or fL is winning from M for φ. In the latter
case, by definition SL is winning form M and we may use the IH, to
conclude that M is not a model of lose(SL, φ), which necessarily implies
that M is not a model of lose(S, φ ∨ ψ). In the case where dom(fL) is
empty, then dom(fR) is non-empty; otherwise, dom(f) is empty and thus
not a winning strategy. By similarly reasoning fR is winning fromM , and
we may conclude that M is not a model of lose(S, φ ∨ ψ).

Case (⇐). By assumption, M is not a model of lose(S, φ ∨ ψ).
By definition, lose(S, φ ∨ ψ) = lose(SL, φ) ∧ lose(SR, ψ). Thus, either M
is not a model of both lose(SL, φ) and lose(SR, ψ). In either case, we may
apply the IH to conclude that either SL is winning from M or SR is
winning from M . Since at least one branch must be winning from M , S
must be winning from M as well.

Case (∀x. φ). By construction S = • · S′ and lose(S, ∀x. φ) = ∃x. lose(S′, φ).

Case (⇒). By assumption, S is winning from M .

Proof by contradiction. Suppose M is a model of lose(S, ∀x. φ). There
must be some value c such that M{x 7→ c} is a model of lose(S′, φ). By
the IH, it must be that S′ is not winning from M{x 7→ c}. However,
by assumption S is winning from M , and thus S′ must be winning from
M{x 7→ c}, a condradiction.

Case (⇐). By assumption, M ̸|= lose(S,∀x. φ).
Thus for any possible value c, M{x 7→ c} is not a model of lose(S′, φ).
By the IH, we may conclude that S′ is winning from M{x 7→ c}. Since c
is arbitrary, it must be that S is winning from M .

Case (∃x. φ). By construction S = (t0 · S0) ∪ · · · ∪ (tn · Sn) and

lose(S,∃x. φ) = lose(S0, φ)[x 7→ t] ∧ · · · ∧ lose(Sn, φ)[x 7→ tn].

Case (⇒). By assumption S is winning from M .

By definition there is some winning strategy f that conforms to S. f(ϵ)
must be some constant c. Let f ′(π) = f(c · π)) for every c · π ∈ dom(f).
Necessarily, there must be some i sucht that JtiKM = c and f ′ conforms
to Si. f

′ is winning fromM{x 7→ f(ϵ)}. Thus, Si is winning fromM{x 7→
f(ϵ)}. By the IH, lose(Si, φ) is not modeled by M{x 7→ c}. Since JtiKM =
c, we may conclude that M is not a model of lose(Si, φ)[x 7→ ti]. Finally,
we may conclude that M is not a model of lose(S, φ).

Case (⇐). By assumption M is not a model of lose(S, ∃x. φ).
There must be some Si and ti such that M ̸|= lose(Si, φ)[x 7→ ti]. Thus
M{x 7→ JtKM} ̸|= lose(Si, φ). By the IH, Si must be winning fromM{x 7→
JtKM}. There must be some strategy f ′ that conforms to Si that wins

QLA Satisfiability Via Fine-grained Strategy Improvement 25

from M{x 7→ JtKM}. Let f(ϵ) = JtKM) and f(JtKM · π) = f ′(π) for every
π ∈ dom(f ′). f is winning from M . f conforms to S. Thus, S is winning
from M .

⊓⊔

Theorem 1. Algorithm 1 is a decision procedure for LRA satisfiability.

Proof. We proceed by proving a more general theorem:
Let φ be an LRA formula whose top level connective is a universal quantifier or a
conjunction,M be a model of the free variables of φ (FV (φ) ⊆ dom(M)), and S
be a SAT skeleton for φ. (1) Solve(φ,M, S) is terminating, (2) if Solve(φ,M, S)
returns Sat S′, then S′ is a SAT skeleton that is winning from M , and (3) if
Solve(φ,M, S) returns Unsat U , then U is an UNSAT skeleton that is winning
from M .

Necessarily, Algorithm 1 is a decision procedure if the more general theorem
holds. We proceed to prove the more general theorem by induction on the size
of φ.
Case (φ is atomic). S must be {ϵ}.

Either S has a counter-strategy from M or it does not. In the second case,
Solve returns Sat S. It must have been the case that M ̸|= lose(S, φ). We
may then use Proposition 1, to conclude that S is winning from M .

In the first case, S must have a counter-strategy. Let U be the returned
counter-strategy. By definition, U must be {ϵ}, π′ is ϵ and U ′ is U . Solve re-
cursively calls Solve(¬φ,M,U). From the fact that S had a counter-strategy
we may conclude that M |= lose(φ, S). By definition, lose(φ, S) = φ. It must
be that M ̸|= lose(¬φ,U) as lose(¬φ,U) = ¬φ. U does not have a counter-
strategy. Thus the recursive call will return Sat U , and the current call to
Solve willl return Unsat U . Necessarily, U is a winning UNSAT skeleton
from M .

Case (φ is not atomic).
Either S has a counter-strategy from M or it does not. In the second case,
Solve returns Sat S. Since S did not have a counter-strategy lose(S, φ) must
not be modeled by M . Thus S must be a winning SAT skeleton from M .

Otherwise, S has a counter-skeleton U . By the assumption that φ must
begin with either a universal quantifier or a conjunction, π′ must be non-
empty, and U ′ = {π : π′π ∈ U}. Solve recursively calls Solve(¬φπ′

,M ∪
Mπ′

, U ′). By the IH, the recursive call is terminating and either returns a
winning SAT skeleton from M ∪ Mπ′

or a wining UNSAT skeleton from
M ∪Mπ′

. If the recursive call returns a SAT skeleton U ′′, then the current
call to Solve returns Unsat {π′π : π ∈ U ′′}. Since U ′′ is a winning SAT
skeleton for ¬φπ′

from M ∪Mπ′
, U ′′ must be a winning UNSAT skeleton for

φπ′
. Since Mπ′

exactly records the choices of π′, it must be the case that the
returned UNSAT skeleton from M .

If the recursive call returns an UNSAT skeleton S′ from M ∪Mπ′
, then

the algorithm does not yet terminate, and instead returns the result of calling
Solve(φ,M, S∪{(¬π′)π : π ∈ S′}). From the above reasoning, it’s clear that

26 C. Murphy and Z. Kincaid

if the new call terminates, then the returned result will satisfy properties (2)
and (3).

We now turn to proving that the algorithm will eventually terminate.
Since S′ is a winning skeleton for the sub-game ¬φπ′

, it must be a counter-
strategy to U ′. Moreover, the new SAT skeleton passed to the new call to
solve, S∪{(¬π′) ·π : π ∈ S′}, must also beat U . Every path the conforms to
both U and the new SAT skeleton must be won by SAT; otherwise, S′ would
not be winning. By accumulating, the new skeletons on each recursive call,
we can be sure that U is never produced as a counter strategy to any future
call of solve.

More explicitly, a counter-strategy for the current game is never pro-
duced more than once—Solve always makes progress. There are finitely
many counter-strategies producable by Algorithm 3. There are only 2 possible
choices for every disjunction (take the left branch or take the right branch).
For existentials, there are finitely many possible choices of terms selected by
the term selection algorithm. This result is proven by Farzan and Kincaid
[8]’s Lemma 4.4. Combining these two facts—no counter-strategy is explored
twice and there are finitely many counter-strategies—it must be that Solve
will eventually terminate.

⊓⊔

	Quantified Linear Arithmetic Satisfiability Via Fine-grained Strategy Improvement

