
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Verifying Solutions to Semantics-Guided Synthesis Problems

ANONYMOUS AUTHOR(S)

Semantics-Guided Synthesis (SemGuS) provides a framework to specify synthesis problems in a solver-agnostic
and domain-agnostic way, by allowing a user to provide both the syntax and semantics of the language in
which the desired program should be synthesized. Because synthesis and verification are closely intertwined,
the SemGuS framework raises the problem of how to verify programs in a solver and domain-agnostic way.

We prove that the problem of verifying whether a program is a valid solution to a SemGuS problem can be
reduced to proving validity of a query in the 𝜇CLP calculus, a fixed-point logic that generalizes Constrained
Horn Clauses and co-Constrained Horn Clauses. Our encoding into 𝜇CLP allows us to further classify the
SemGuS verification problems into ones that are reducible to validity of (i) first-order-logic formulas, (ii)
Constrained Horn Clauses, (iii) co-Constrained Horn Clauses, and (iv) 𝜇CLP queries. Furthermore, our encoding
shines light on some limitations of the SemGuS framework, such as its inability to model nondeterminism
and reactive synthesis. We thus propose a modification to SemGuS that makes it more expressive, and for
which verifying solutions is exactly equivalent to proving validity of a query in the 𝜇CLP calculus. Our
implementation of SemGuS verifiers based on the above encoding can verify instances that were not even
encodable in previous work. Furthermore, we use our SemGuS verifiers within an enumeration based SemGuS
solver to correctly synthesize solutions to SemGuS problems that no previous SemGuS synthesizer could solve.

1 INTRODUCTION

In program synthesis, the goal is to find a program in a given search space that meets a given
specification. Synthesis has found great successes in specific domains, e.g., spreadsheet transforma-
tions [Polozov and Gulwani 2015] and bit-vector manipulations [Gulwani 2012], where the search
space is fixed and its properties can be exploited to design powerful domain-specific synthesis
solvers. However, for synthesis to become a general-purpose technology that can help users with a
variety of tasks, one should be able to customize the search space and specifications of a synthesis
problem in a programmable way that is agnostic of a specific domain or synthesis solver.
To address the problem of making synthesis “programmable”, Kim et al. [2021] proposed the

SemGuS framework, which enables one to specify synthesis problems in a solver-agnostic and
domain-agnostic way. The key differentiating aspect of the SemGuS framework is that a user can
use Constrained Horn Clauses (a least-fixed-point logic) to define the semantics of the programming
language over which one is interested in performing synthesis. (A detailed example of SemGuS
problem is given in Figure 1 and discussed in Section 2.1.) While this formalism enables a great deal
of flexibility when describing a synthesis problem—e.g., one can naturally define the operational
semantics of an imperative programming language—this generality comes at a cost: building solvers
for general SemGuS problems can be difficult [D’Antoni et al. 2021].

Solving a synthesis problem requires, at the very least, to be able to verify whether a synthesized
program satisfies the desired specification. Because of the added complexity introduced by Con-
strained Horn Clauses, Kim et al. [2021] have so far only proposed ways to verify programs in cases
where the specification is given through a finite set of examples—i.e., there is currently no way to
verify the solution to a SemGuS problem for a general specification—e.g., those involving quantified
variables. Verification is not only needed to check that the final solution meets the specification, it
is also often used to implement synthesis algorithms that use enumeration and constraint-solving
to efficiently explore the search space of possible programs. The problem of verifying whether a

candidate solution is correct is a crucial missing component that is needed for solving SemGuS problems

involving complex specifications, and for building effective SemGuS solvers.

2024. XXXX-XXXX/2024/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

The key challenge in verifying solutions to SemGuS problem lies in the fact that the semantics
of the programming language for which we are performing verification is an input parameter,
given as a set of Constrained Horn Clauses (CHCs)—i.e., a set of Horn clauses augmented with
first-order theories that give meaning to a set of relations defining the semantics of programs. From
the standpoint of the SemGuS framework, the language for which we are performing verification
is not fixed—and can in fact be arbitrary—and the verification technique needs to be able to
reason about the CHCs that define a language’s semantics. In particular, because the semantics
of the input language is provided logically, there is no easy way to relate it to known verification
approaches that are tailored to specific programming constructs. This last aspect makes existing
verification approaches that are tied to specific programming languages [Gupta and Rybalchenko
2009; Henzinger et al. 2008; Leino 2010; Pereira and Ravara 2021; Zheng et al. 2017] not suitable for
verifying solutions to SemGuS problems. In particular, these verification approaches take advantage
of a fixed programming language and its fixed semantics to use specialized techniques such as
loop-invariants and Hoare-style reasoning for imperative programs [Leino 2010] and type-based
reasoning for functional programs [Pereira and Ravara 2021].

In this paper, we present a comprehensive study of the problem of verifying solutions to SemGuS
problems. The first contribution of this paper is the following: given a program 𝑝 , a semantics
defined using Constrained Horn Clauses 𝑆𝑒𝑚, and a specification 𝜑 (which is allowed to mention
the semantic relations defined by 𝑆𝑒𝑚), we show that the problem of verifying whether 𝑝—when
evaluated according to 𝑆𝑒𝑚—satisfies 𝜑 can be expressed as a validity check in the 𝜇CLP calculus.
𝜇CLP is a fixed-point logic that generalizes CHCs and co-CHCs by combining both least and greatest
fixed points with interpreted first-order theories. While SemGuS uses only least fixed points to
define the semantics of programs (i.e., via CHCs), the fact that the semantic relations can appear
in both positive and negative positions in a user-supplied specification makes a least-fixed-point
calculus not expressive enough to verify whether a program meets the specification, resulting in the
need for a more expressive calculus, such as 𝜇CLP. Because of the complexity of building solvers
for checking validity of 𝜇CLP queries, the second contribution of the paper is to identify fragments
of SemGuS verification problems that can be reduced to checking satisfiability of first-order-logic
formulas, CHCs, and co-CHCs, for which more scalable solvers exists.
Our study highlights a strong connection between SemGuS and 𝜇CLP, and raises the question

of whether there exist programming languages for which verification is expressible using 𝜇CLP,
but for which SemGuS cannot define the semantics. We answer this question affirmatively by
showing that SemGuS cannot reason about programs involving nondeterminism and games, both
of which are commonly found in reactive-synthesis problems [Alur et al. 2018]. To close the loop
between 𝜇CLP and SemGuS, we define a minimal extension of SemGuS—i.e., we allow relations
to appear in a negated form in the semantic definitions—which results in a new framework that
aligns exactly with what is verifiable using 𝜇CLP. Finally, we incorporate our verification technique
into a synthesizer for SemGuS problems that is capable of solving SemGuS problems with complex
logical specifications.

Contributions. Our work makes the following contributions.
• We identify how the problem of verifying programs in SemGuS is tightly related to proving
validity in fixed-point logics (Section 2).
• We propose an extension of the SemGuS framework that can capture, e.g., reactive synthesis
problems (Section 3).
• We analyze when solutions to SemGuS problems can be verified using various logical

fragments (SMT, CHC, co-CHC, and 𝜇CLP) and show that our extension of SemGuS aligns
exactly with what is verifiable using 𝜇CLP (Section 4) .

, Vol. 1, No. 1, Article . Publication date: May 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Verifying Solutions to Semantics-Guided Synthesis Problems 3

• We implemented our approach in a tool, Muse, together with several optimizations (Sec-
tion 5), and used Muse to verify (or disprove correctness for) solutions to SemGuS problems
that could not be solved by any prior approach (Section 6).
• We incorporated Muse within the SemGuS synthesizer Ks2 to enable Ks2 to solve SemGuS
problems that cannot be solved by any previous approach (Section 6). In particular, Ks2 +
Muse is the first SemGuS synthesizer that is able to solve SemGuS problems that involve a
general specification—i.e., involving quantified variables.

Section 7 discusses related work. Section 8 concludes.

2 OVERVIEW

This section illustrates our approaches for verifying a solution to a SemGuS problem using four
problems of increasing complexity. Our technique reduces the verification task to checking validity
of queries in various logical fragments that can be dispatched to existing solvers. The examples
should provide enough details to understand the SemGuS framework.

2.1 Max2:Quantified SMT

Consider the problem of synthesizing a loop-free imperative program with two variables x and y
that computes the maximum of two values. Figure 1 gives all the components necessary to define
this synthesis problem in the SemGuS framework:
• A grammar 𝐺max2 defining the syntax of the language under consideration (Figure 1a).
• A set of constrained Horn clauses Semmax2 that inductively define the semantics (as a least
fixed point) of all programs in the language (Figure 1d).
• A specification 𝜑max2 that describes how the synthesized program should behave when
evaluated according to Semmax2 (Figure 1b).

The specification 𝜑max2 states that the synthesized program (represented symbolically by the
variable max2) must terminate in a state in which 𝑥 ′ (i.e., the final value of the variable x) is the
maximum of the initial-state values assigned to variables x and y—i.e., 𝑥 and 𝑦. Solving this SemGuS
problem means providing a program in the grammar that satisfies this specification when evaluated
according to the semantics.

Figure 1c presents a candidate solution 𝑠max2 to this SemGuS problem. Rather than determining
how to synthesize 𝑠max2 , this paper tackles the following question: how do we show that when the
program 𝑠max2 is “evaluated” according to the semantics Semmax2 , it satisfies the specification 𝜑max2 .

Beyond least fixed points. Because the semantics is already defined using a least-fixed-point logic,
namely CHCs, it is natural to be able to solve the problem in terms of validity of CHCs. That is, at
first blush, it seems plausible to check the validity query in Equation (1), which states that 𝜑max2 is
valid when interpreted using the least solution of the semantic relations.

Sem
LFP

max2
|= ∀𝑥,𝑦, 𝑥 ′ .(∃𝑦′ .Sem𝑆 (max2, 𝑥,𝑦, 𝑥 ′, 𝑦′) ⇔ (𝑥 ′ = 𝑥 ∨ 𝑥 ′ = 𝑦) ∧ 𝑥 ≤ 𝑥 ′ ∧ 𝑦 ≤ 𝑥 ′) (1)

While the semantic relation Semmax2 is defined via a least fixed point over a set of constrained Horn
clauses, the positive occurrence of Sem𝑆 within 𝜑max2 results in a query that cannot be reasoned
about within a least-fixed-point logic (namely CHCs). Note that the typical approach to prove the
validity of a query of the form Sem

LFP

max2
|= 𝜓 would be to check that the formula SemLFP

max2
∧ ¬𝜓 is

unsatisfiable, which requires every occurrence of a semantic relation in𝜓 to be positive. Otherwise,
the query falls outside of the CHC fragment of first-order logic.

Finite derivation trees can be desugared. Our first insight is that for problems like𝑚𝑎𝑥2, where
the semantic definitions are recursively defined with respect to the term’s proper subterms, one can

, Vol. 1, No. 1, Article . Publication date: May 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

𝑆 := x = 𝐸 | y = 𝐸

| 𝑆;𝑆 | Ite 𝐵 𝑆 𝑆

𝐸 := 0 | 1 | x | y | 𝐸+𝐸

𝐵 := 𝐸 < 𝐸

(a) Grammar 𝐺max2

∀𝑥,𝑦, 𝑥 ′ .©­«
∃𝑦′ .Sem𝑆 (𝑚𝑎𝑥2, 𝑥,𝑦, 𝑥 ′, 𝑦′)

⇕
(𝑥 ′ = 𝑥 ∨ 𝑥 ′ = 𝑦) ∧ 𝑥 ≤ 𝑥 ′ ∧ 𝑦 ≤ 𝑥 ′

ª®¬
(b) Specification 𝜑max2

Ite
(x < y)
(x = y)
(x = x)

(c) Solution 𝑠max2

Sem𝐸 (e, 𝑥,𝑦, 𝑥 ′) ∧ 𝑦 = 𝑦′

Sem𝑆 (x = e, 𝑥,𝑦, 𝑥 ′, 𝑦′)
Sem𝐸 (e, 𝑥,𝑦,𝑦′) ∧ 𝑥 = 𝑥 ′

Sem𝑆 (y = e, 𝑥,𝑦, 𝑥 ′, 𝑦′)
Sem𝐵 (b, 𝑥,𝑦,⊤) Sem𝑆 (t, 𝑥,𝑦, 𝑥 ′, 𝑦′)

Sem𝑆 (Ite b t e, 𝑥,𝑦, 𝑥 ′, 𝑦′)

Sem𝑆 (s, 𝑥,𝑦, 𝑥 ′′, 𝑦′′) Sem𝑆 (t, 𝑥 ′′, 𝑦′′, 𝑥 ′, 𝑦′)
Sem𝑆 (s; t, 𝑥,𝑦, 𝑥 ′, 𝑦′)

Sem𝐵 (b, 𝑥,𝑦,⊥) Sem𝑆 (e, 𝑥,𝑦, 𝑥 ′, 𝑦′)
Sem𝑆 (Ite b t e, 𝑥,𝑦, 𝑥 ′, 𝑦′)

Sem𝐸 (0, 𝑥,𝑦, 0) Sem𝐸 (1, 𝑥,𝑦, 1)
Sem𝐸 (s, 𝑥,𝑦, 𝑟𝑠) Sem𝐸 (t, 𝑥,𝑦, 𝑟𝑡) 𝑏 ⇔ 𝑟𝑠 < 𝑟𝑡

Sem𝐵 (s < t, 𝑥,𝑦, 𝑏)

Sem𝐸 (s, 𝑥,𝑦, 𝑟𝑠) Sem𝐸 (t, 𝑥,𝑦, 𝑟𝑡) 𝑟 = 𝑟𝑠 + 𝑟𝑡
Sem𝐵 (s + t, 𝑥,𝑦, 𝑟) Sem𝐸 (x, 𝑥,𝑦, 𝑥) Sem𝐸 (y, 𝑥,𝑦,𝑦)

(d) Semantics Semmax2

Fig. 1. SemGuS definition for the problem of synthesizing an imperative program𝑚𝑎𝑥2 that computes the

maximum of two input values 𝑥 and 𝑦. Figure 1a contains a regular tree grammar defining the syntax of

the language we can use to build programs (i.e., imperative programs with if-then-else, comparisons, and

linear assignments). The semantics of the language is inductively defined using constrained Horn clauses

(Figure 1d)—e.g., the semantics of programs derivable from nonterminal 𝑆 is given via the inductively defined

relation Sem𝑆 (s, 𝑥,𝑦, 𝑥 ′, 𝑦′) where, for example, Sem𝑆 (x=1, 3, 3, 1, 3) denotes that running the program x=1
with initial values of 3 for both 𝑥 and 𝑦 results in a state where 𝑥 is 1 and 𝑦 is 3. Figure 1b specifies when

the solution is correct: on an input state 𝑥,𝑦, the program𝑚𝑎𝑥2 should output a state 𝑥 ′, 𝑦′ such that 𝑥 ′ is
greater or equal than the values of 𝑥 and 𝑦 and is equal to one of them. The program in Figure 1c (parenthesis

are added for readability) is a possible solution to this SemGuS problem—this program is in the grammar

𝐺max2 and when evaluated on any possible input state according to the semantics Semmax2 , it satisfies the

specification 𝜑max2 .

always build a finite derivation tree that describes the semantics of a given program. For example,
the derivation tree for 𝑠max2 is as follows:

𝑟𝑠 = 𝑥

Sem𝐸 (x, 𝑥, 𝑦, 𝑟𝑠)
𝑟𝑡 = 𝑥

Sem𝐸 (y, 𝑥, 𝑦, 𝑟𝑡) 𝑟𝑠 < 𝑟𝑡

Sem𝐵 (x < y, 𝑥, 𝑦,𝑏) 𝑏 ∧

𝑦 = 𝑥 ′

Sem𝐸 (y, 𝑥, 𝑦, 𝑥 ′) 𝑦 = 𝑦′

Sem𝑆 (x = y, 𝑥, 𝑦, 𝑥 ′, 𝑦′) ∨ ¬𝑏 ∧

𝑥 = 𝑥 ′

Sem𝐸 (x, 𝑥, 𝑦, 𝑥 ′)
Sem𝑆 (x = x, 𝑥, 𝑦, 𝑥 ′, 𝑦′)

Sem𝑠
max2

= Sem𝑆 (Ite (x < y) (x = y) (x = x), 𝑥, 𝑦, 𝑥 ′, 𝑦′) (2)

Because the tree is finite, the relation Sem𝑠max2
can be defined equivalently with a logic that does

not require fixed points. In particular, we can “symbolically execute” the tree in Equation (2) starting
from the leaves and working toward the root. At each step, a semantic relation in the succedent of
an inference-rule instance is replaced by its definition and simplified using the properties available
in the antecedent. Through this process, we can extract the following formula 𝜑Sem𝑠

max2

, which
exactly characterizes Sem𝑠max2

:

∃𝑟𝑏 .(∃𝑟𝑠 , 𝑟𝑡 .𝑟𝑠 = 𝑥∧𝑟𝑡 = 𝑦∧𝑟𝑏 ⇔ 𝑟𝑠 < 𝑟𝑡)∧ ((𝑟𝑏 ∧ 𝑥 ′ = 𝑦 ∧ 𝑦′ = 𝑦) ∨ (¬𝑟𝑏 ∧ 𝑥 ′ = 𝑥 ∧ 𝑦′ = 𝑦)) (3)

, Vol. 1, No. 1, Article . Publication date: May 2024.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Verifying Solutions to Semantics-Guided Synthesis Problems 5

We can now replace the term Sem𝑆 (𝑠max2, 𝑥,𝑦, 𝑥
′, 𝑦) in the formula in Equation (1) with the

freshly computed term 𝜑Sem𝑠
max2

and obtain the following formula, which is entirely describable in
first-order logic without requiring any fixed-point reasoning.

∀𝑥,𝑦, 𝑥 ′ . (∃𝑦′ .𝑦 = 𝑦′ ∧ ((𝑥 < 𝑦 ∧ 𝑥 ′ = 𝑦) ∨ (𝑥 ≥ 𝑦 ∧ 𝑥 ′ = 𝑥))) ⇔ (𝑥 ′ = 𝑥∨𝑥 ′ = 𝑦)∧𝑥 ≤ 𝑥 ′∧𝑦 ≤ 𝑥 ′

The resulting formula is logically equivalent to Equation (1) and is thus valid if and only if the
candidate program satisfies the synthesis problem. In our tool Muse, the quantified satisfiability
modulo theories (SMT) solver Z3 [Bjørner and Janota 2015]) proves this formula valid in 0.06
seconds, thereby proving that 𝑠max2 is a correct solution to this SemGuS problem. Given the
incorrect candidate program Ite (y < x) (x = y) (x = x), our tool Muse performs the same
process and proves in 0.06 seconds that this program is not a solution to this SemGuS problem.

2.2 DoubleViaLoop Partial: CHCs

The technique presented in Section 2.1 relies on the fact that for every program in the language,
one can build a finite derivation tree that describes its semantics. Our second example considers a
more complex synthesis task where such a property does not hold (Figure 2).

The task is to synthesize an imperative program (this time potentially containing a loop) given
initial values 𝑥 and𝑦 for the variables x and y, respectively; if the program terminates, it must set the
value 𝑦′ of variable y to 2𝑥 . The grammar𝐺loop is restricted so that assignments can only increment
and decrement variables (Figure 2a)—i.e., a correct program for the task must contain a loop. The
semantics Semloop of this language (Figure 2d) is defined similarly to the one in our previous example.
The key distinction is how the second CHC, which defines the (big-step) semantics of loops, is not
structurally decreasing—i.e., the loop 𝑙 appears again in a semantic relation in the premise of the
CHC. The specification 𝜑loop requires that any correct solution to the synthesis problem must be
partially correct: if the input value 𝑥 is non-negative and the solution (symbolically represented as
𝑓loop) terminates with the output 𝑦′, then 𝑦′ is twice 𝑥 (Figure 1b).
Similar to the previous example, verifying whether the program 𝑠loop given in Figure 2b is

correct requires proving that the query Qloop ≜ Sem
LFP

loop
|= 𝜑loop [𝑓loop ↦→ 𝑠loop] is valid—i.e., that the

candidate solution 𝑠loop satisfies the specification 𝜑loop when interpreted using the least solution of
the semantic rules Semloop . Unlike the previous example, the specification 𝜑loop (Figure 1b) contains
only negative occurrences of the semantic relations (because it does not require the program to
terminate), thus enabling the use of a least-fixed-point logic (namely CHCs) to reason about the
query. In Muse, we use the CHC solver Spacer [Komuravelli et al. 2013] to solve Qloop in 0.2 seconds,
thereby proving that 𝑠loop is a valid solution.

2.3 DoubleViaLoop Total: CHCs and co-CHCs

In Section 2.2, we were able to use a CHC solver to reason about the query Qloop because the
specification 𝜑loop did not contain positive occurrences of the semantic relations in Semloop. In
the next example, we consider the same grammar 𝐺loop and semantics Semloop as in Figure 2, but
introduce a modified specification 𝜑 tot

loop
that requires a form of total correctness:

𝜑 tot

loop
= ∀𝑥,𝑦′ .(0 ≤ 𝑥 ∧ 2𝑥 = 𝑦′) ⇒ Sem𝐿 (𝑓loop, 𝑥, 0, 0, 𝑦′) (4)

The above specification states that when the program to be synthesised starts in a state where
variable x takes a non-negative value 𝑥 and variable y is 0, then it will terminate in a state where x is 0
and y is twice x’s initial value 𝑥 . However, the resulting query𝑄 tot

loop
= Sem

LFP

loop
|= 𝜑 tot

loop
[𝑓loop ↦→ 𝑠loop]

cannot be solved using a least-fixed-point logic because the specification has a positive occurrence
of the semantic relation Sem𝐿 . Instead, we show that one can construct a logically equivalent query

, Vol. 1, No. 1, Article . Publication date: May 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

𝐿 := while 𝐵 do ⟨𝑆⟩
𝑆 := x++ | x-- | y++
| y-- | 𝑆;𝑆

𝐵 := 0 < x | 0 < y

(a) Grammar 𝐺
loop

while 0 < x do
x--;
y++;
y++

(b) Solution 𝑠
loop

∀𝑥,𝑦′ . ©­«
0 ≤ 𝑥 ∧ Sem𝐿 (𝑓loop, 𝑥, 0, 0, 𝑦′)

⇓
2𝑥 = 𝑦′

ª®¬
(c) Specification 𝜑

loop

Sem𝐵 (b, 𝑥,𝑦,⊤) Sem𝑆 (s, 𝑥,𝑦, 𝑥 ′′, 𝑦′′) Sem𝐿 (while b do s, 𝑥 ′′, 𝑦′′, 𝑥 ′, 𝑦′)
Sem𝐿 (while b do s, 𝑥,𝑦, 𝑥 ′, 𝑦′)

Sem𝐵 (b, 𝑥,𝑦,⊥) 𝑥 = 𝑥 ′ 𝑦 = 𝑦′

Sem𝐿 (while b do s, 𝑥,𝑦, 𝑥 ′, 𝑦′)
Sem𝑆 (s, 𝑥,𝑦, 𝑥 ′′, 𝑦′′) Sem𝑆 (t, 𝑥 ′, 𝑦′, 𝑥 ′′, 𝑦′′)

Sem𝑆 (s; t, 𝑥,𝑦, 𝑥 ′, 𝑦′)

𝑥 ′ = 𝑥 + 1 𝑦′ = 𝑦

Sem𝑆 (x++, 𝑥,𝑦, 𝑥 ′, 𝑦′)
𝑥 ′ = 𝑥 − 1 𝑦′ = 𝑦

Sem𝑆 (x--, 𝑥,𝑦, 𝑥 ′, 𝑦′)
𝑏 ⇔ 0 < 𝑥

Sem𝐵 (0 < x, 𝑥,𝑦, 𝑏)

𝑥 ′ = 𝑥 𝑦′ = 𝑦 + 1
Sem𝑆 (y++, 𝑥,𝑦, 𝑥 ′, 𝑦′)

𝑥 ′ = 𝑥 𝑦′ = 𝑦 − 1
Sem𝑆 (y--, 𝑥,𝑦, 𝑥 ′, 𝑦′)

𝑏 ⇔ 0 < 𝑦

Sem𝐵 (0 < y, 𝑥,𝑦, 𝑏)

(d) Semantics Sem
loop

Fig. 2. Computing 2𝑥 in the language Imp
loop

that allows increments and loops.

𝑄 tot

loop
that can be represented using co-Constrained Horn Clauses (co-CHCs). Whereas CHCs are

able to define least fixed points, co-CHCs are able to define greatest fixed points. This capability
allows us to define a new relation—the complement relation Sem

¬
𝐿
(𝑓loop, 𝑥, 0, 0, 𝑦′)—as a coCHC,

which allows us to reason about negative occurrences of the form ¬Sem𝐿 (·, ·, ·, ·, ·). This approach
allows us to solve a new query in which all relations (i) are defined as greatest fixed points, and
(ii) appear negatively within the specification:

𝑄 tot

loop
= Sem

¬ GFP

loop
|= ∀𝑥,𝑦′ .(0 ≤ 𝑥 ∧ 2𝑥 = 𝑦′) ⇒ ¬Sem¬𝐿 (𝑠loop, 𝑥, 0, 0, 𝑦′), (5)

where Sem¬ GFP

loop
is the greatest fixed point of the coCHCs that define the dual semantics of Semloop.

Intuitively, the query 𝑄 tot

loop
asks if there is a positive value for 𝑥 for which the candidate program

does not compute 2𝑥—either because the candidate program does not terminate on the input or
because it terminates in a state where y is not 2𝑥 .

Muse takes as input 𝑠loop, Semloop, and 𝜑 tot

loop
and produces the query 𝑄 tot

loop
. The process dualizes

every semantic relation and each semantic rule. For example, our encoding produces the following
rule to define Sem¬

𝑆
(s; t, 𝑥,𝑦, 𝑥 ′, 𝑦′).

Sem
¬
𝑆 (s; t, 𝑥,𝑦, 𝑥 ′, 𝑦′) ⇒ ∀𝑥 ′′, 𝑦′′ .Sem¬𝑆 (s, 𝑥,𝑦, 𝑥 ′′, 𝑦′′) ∨ Sem¬𝑆 (t, 𝑥 ′′, 𝑦′′, 𝑥 ′, 𝑦′)

After the encoding, the produced query 𝑄 tot

loop
is logically equivalent to the original query 𝑄 tot

loop
and

formulated entirely within a fragment of first-order logic that can be solved using only greatest
fixed points (namely coCHCs). Thus, we can use a co-CHC solver to prove the validity of this query
to determine that 𝑠loop is correct with respect to the specification 𝜑 tot

loop
. Due to the lack of coCHC

solvers, Muse uses the 𝜇CLP solver MuVal [Unno et al. 2023] to solve this instance in 1.6 seconds.

, Vol. 1, No. 1, Article . Publication date: May 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Verifying Solutions to Semantics-Guided Synthesis Problems 7

CHC and co-CHC. The solutions to the two examples discussed above can be verified using either
CHCs or co-CHCs alone because the semantic relations appear in the specifications either only
positively (in which case we use the dual semantics) or only negatively (in which case we use the
original semantics).

Expressing total correctness requires specifications in which the semantic relations appear both
positively and negatively, as in the following example:

𝜑both

loop
= ∀𝑥,𝑦′ .0 ≤ 𝑥 ⇒ (Sem𝐿 (𝑥, 0, 0, 𝑦′) ⇔ 2𝑥 = 𝑦′) (6)

Although this specification does not allow one to directly use any of the techniques we presented,
in this case, the specification can be split into two separate specifications in which the semantic
relations appear only positively in one, and only negatively in the other. In fact, this split results in
the two specifications 𝜑loop and 𝜑 tot

loop
. To verify that a candidate program satisfies the specification

in𝜑both

loop
, it is sufficient to check that the candidate program satisfies both𝜑loop and𝜑 tot

loop
by checking

validity of the queries Qloop and 𝑄 tot

loop
.

2.4 Hyperproperties: 𝜇CLP

Section 2.3 presented a technique for verifying a solution for cases when the specification can be
split into finitely many formulas in which the semantic relations appear only positively or only
negatively. However, the splitting approach is not always possible!
For example, consider the following specification that requires the synthesized function to be

commutative in its arguments. (Such properties are sometimes called hyperproperties because their
falsification requires one to consider two different executions of the program, starting from different
input states.)

𝜑comm ≜ ∀𝑥,𝑦, 𝑥 ′, 𝑦′ .Sem𝐿 (𝑠, 𝑥,𝑦, 𝑥 ′, 𝑦′) ⇒ Sem𝐿 (𝑠,𝑦, 𝑥, 𝑥 ′, 𝑦′) (7)
The specification 𝜑comm could arise when trying to synthesize a program like

𝑠plus = while 0 < x do x--; y++ (8)

which, when it terminates, sets the value of variable y to the sum of the inputs 𝑥 and 𝑦. This
program is in the language defined by the grammar 𝐺loop in Figure 2a, and we assume it operates
over the semantics Semloop in Figure 2d.

To prove that the program 𝑠plus satisfies the specification 𝜑comm, one must reason simultaneously
about the relation Sem𝐿 (sum, 𝑥,𝑦, 𝑥 ′, 𝑦′) and its complement Sem¬

𝐿
(sum, 𝑥,𝑦, 𝑥 ′, 𝑦′). Even if we

define the dual semantics of the language, we still need to reason about both such relations
simultaneously. We show that the problem of verifying whether a program meets a specification
like 𝜑comm—and in fact every specification expressible in SemGuS—can be reduced to checking
validity in the 𝜇CLP calculus, a logic that combines least- and greatest-fixed-point reasoning [Unno
et al. 2023].
Muse reduces this verification problem to the following 𝜇CLP query that combines both the

positive semantics Semloop and negative semantics Sem¬
loop

:

𝑄plus ≜ Sem
LFP

loop
∧ Sem¬ GFP

loop
|= ∀𝑥,𝑦, 𝑥 ′, 𝑦′ .Sem¬𝐿 (𝑠plus, 𝑥,𝑦, 𝑥 ′, 𝑦′) ∨ Sem𝐿 (𝑠plus, 𝑦, 𝑥, 𝑥 ′, 𝑦′), (9)

which follows from Equation (7) by (i) instantiating 𝑠 as 𝑠plus , (ii) replacing “Sem𝐿 (𝑠plus, 𝑥,𝑦, 𝑥 ′, 𝑦′) ⇒
. . .” with “¬Sem𝐿 (𝑠plus, 𝑥,𝑦, 𝑥 ′, 𝑦′) ∨ . . .,” and (iii) replacing “¬Sem𝐿 (𝑠plus, 𝑥,𝑦, 𝑥 ′, 𝑦′)” with
“Sem¬

𝐿
(𝑠plus, 𝑥,𝑦, 𝑥 ′, 𝑦′).”

In Muse, we use the 𝜇CLP solver MuVal [Unno et al. 2023] to solve𝑄comm in 6.2 seconds, thereby
proving that 𝑠plus is commutative.

, Vol. 1, No. 1, Article . Publication date: May 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

𝑆 :=repeat 𝑆 | stay | 𝐿 | 𝑅
| L; 𝑆 | R; 𝑆

(a) Robot Strategy

repeat
R; R; R; R; R;
L; L; L; L; L

(b) Solution strat

¬Buchi¬ (strat, 0, 0)

(c) Specification

Buchi
¬ (strat, 𝑥,𝑦) ← 𝑥 ≠ 𝑦 ∨ (∃𝑦′ . 0 ≤ 𝑦′ ≤ 5 ∧ ¬Reach (strat, 𝑥,𝑦′))

Reach (strat, 𝑥,𝑦) ← ¬Buchi¬ (strat, 𝑥,𝑦) ∨ (∃𝑥 ′, strat′ . Move (strat, 𝑥, 𝑥 ′, strat′) ∧ reach(𝑠𝑡𝑟𝑎𝑡 ′, 𝑥 ′, 𝑦))
Move (repeat 𝑠, 𝑥, 𝑥 ′, strat′) ← Move (𝑠; repeat 𝑠, 𝑥, 𝑥 ′, strat′)

Move (L; 𝑠, 𝑥, 𝑥 ′, strat′) ← strat
′ = 𝑠 ∧ 𝑥 ′ = 𝑥 − 1

Move (R; 𝑠, 𝑥, 𝑥 ′, strat′) ← strat
′𝑠 ∧ 𝑥 ′ = 𝑥 + 1

(d) Semantics Sem
Buchi

.

Fig. 3. An example of a SemGuS
𝜇
problem encoding a Büchi game (a kind of reactive synthesis problem). The

Büchi game requires the player (a robot) to follow a given strategy to forever reach a sequence of moving

targets. The set of allowable strategies is displayed in (a). The robot can move left or right (possibly forever

using repeat). In (b) a solution satisfying the Büchi game is displayed. Following strat the robot will repeatedly

patrol right and left five paces. The specification in (c), requires the robot to reach the moving target forever,

when starting at the origin. In (d) we express the rules of the Büchi game as well as the semantics of the

productions used to define the solution.

2.5 Beyond SemGuS

Section 2.4 showed that for every SemGuS problem, one can verify the correctness of a candidate
solution using a 𝜇CLP solver. This connection raises a natural question in the opposite direction: Are
there programming languages for which verification is expressible using 𝜇CLP, but whose semantics

cannot be expressed using the SemGuS framework? In this paper, we answer the question affirmatively
and propose SemGuS𝜇 , a relatively minor extension of SemGuS such that, in a sense for which we
provide a formal proof in Theorem 4.8, SemGuS𝜇 captures exactly every programming language for
which solutions can be verified using 𝜇CLP.

We illustrate this extension with the SemGuS𝜇 synthesis problem shown in Figure 3, which
requires synthesizing a strategy for a robot to reach a series of targets infinitely often. These
types of synthesis problems are often referred to as reactive synthesis problems. For simplicity, we
consider a world in which the robot and target’s positions are represented by integers with the
targets appearing within a bounded region (e.g., between 0 and 5). Once the robot reaches a target,
an adversary picks the location of the next target and the game continues.
In Figure 3b, we depict a strategy, strat, for the robot. Intuitively, the strategy represents the

robot patrolling left and right within a bounded region (i.e., strat instructs the robot to move five
units right, then five units left, and repeat). To verify that the strategy strat results in the robot
winning the game in Figure 3, we generate the following verification query:

Sem
FP

Buchi
|= ¬Buchi¬ (strat, 0, 0) (10)

We call the semantic relation Buchi
¬ because its dual (along with reach) defines a Büchi game. In

general, Büchi games are played between two players—the first player tries to reach a goal infinitely
often, while the second player tries to thwart the first player. Intuitively, the right-hand side of
the verification query encodes when the robot (using the strategy strat) wins the Büchi game; the
left-hand side of the query (SemFP

Buchi
) defines the rules of the game. Intuitively, Reach encodes that

the robot must eventually satisfy the Büchi condition (i.e., denoted by ¬Buchi¬ (strat, 𝑥,𝑦)). The

, Vol. 1, No. 1, Article . Publication date: May 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Verifying Solutions to Semantics-Guided Synthesis Problems 9

Büchi condition is represented implicitly as the negation of its dual Buchi¬. The Büchi condition
states that the robot must have reached the target, and then an adversary gets to chose a new target
and the game repeats.
To solve the verification query in Equation (10), we must compute the fixed point of SemBuchi.

Unlike the previous examples, the semantics SemBuchi is not defined using CHCs—most notably due
to the negative occurrences of Buchi¬ and Reach within the premise of the semantic rules. In fact,
SemBuchi does not even define a least fixed-point. Because Reach occurs negatively in the premise
of Buchi¬’s definition, the least fixed-point of Buchi¬ requires computing the greatest fixed-point
of Reach¬ (the dual of Reach). Similarly, because Buchi¬ appears negatively within the premise of
the rule defining Reach, the least fixed-point of Reach requires computing the greatest fixed-point
of Buchi (the dual of Buchi¬). Ultimately, because Buchi¬ appears negatively within the verification
query (Equation (10)), SemFP

Buchi
computes the greatest fixed-point of Buchi and the least fixed-points

of Reach and Move .
Our tool Muse dispatches this query to the 𝜇CLP validity solver MuVal [Unno et al. 2023], which

proves the above query valid in 21s, thereby proving that the strategy strat is a valid solution to
the SemGuS𝜇 synthesis problem in Figure 3.

3 SEMGUS AND SEMGUS
𝜇

This section reviews the SemGuS framework [Kim et al. 2021] and describes the more expressive
framework SemGuS𝜇 we propose. A SemGuS synthesis problem is defined in three parts: a grammar
defining the syntax of the language over which programs are to be synthesized (Section 3.1), a
set of logical formulas defining the semantics of programs in the language (Section 3.2), and a
specification defining the properties the synthesized program should exhibit (Section 3.3).

3.1 Syntax as Regular Tree Grammars

The syntax of a programming language is defined as a typed regular tree grammar (RTG). A ranked

alphabet is a tuple ⟨Σ, rkΣ⟩ consisting of a finite set of symbols (Σ) and a function rkΣ : Σ→ N that
associates every symbol with a rank. For any 𝑛 ≥ 0, Σ𝑛 ⊆ Σ denotes the set of symbols of rank
𝑛. The set of all (ranked) Trees over Σ is denoted by 𝑇Σ. Specifically, 𝑇Σ is the least set such that
Σ0 ⊆ 𝑇Σ and if 𝜎𝑘 ∈ Σ𝑘 and 𝑡1, . . . , 𝑡𝑘 ∈ 𝑇Σ, then 𝜎𝑘 (𝑡1, . . . , 𝑡𝑘) ∈ 𝑇Σ. In the remainder, we assume a
fixed ranked alphabet ⟨Σ, rkΣ⟩.

Definition 3.1 (Regular Tree Grammar). A typed Regular Tree Grammar (RTG) is a tuple 𝐺 =

⟨𝑁, Σ, 𝑆,𝑇 , 𝑎, 𝛿⟩, where 𝑁 is a finite set of non-terminal symbols of rank 0; Σ is a ranked alphabet;
𝑆 ∈ 𝑁 is the starting non-terminal; 𝑇 = {𝜏0, . . . , 𝜏𝑘 } is a finite set of types; 𝑎 is a type assignment
assigning each non-terminal to a type and each symbol of rank 𝑖 to a tuple of of types ⟨𝜏0, . . . , 𝜏𝑖⟩ ∈
𝑇 𝑖+1; and 𝛿 a finite set of productions of the form 𝐴0 → 𝜎𝑖 (𝐴1, . . . , 𝐴𝑖) such that for all 0 ≤ 𝑗 ≤ 𝑖 ,
𝐴 𝑗 ∈ 𝑁 is a non-terminal and if 𝑎𝜎𝑖 = ⟨𝜏0, . . . , 𝜏𝑖⟩ then 𝑎𝐴 𝑗

= 𝜏 𝑗 .

Given a tree 𝑡 ∈ 𝑇Σ∪𝑁 , one may apply the production rule 𝑟 = 𝐴→ 𝛽 ∈ 𝛿 to 𝑡 to produce a tree
𝑡 ′ by replacing the leftmost occurrence of 𝐴 in 𝑡 with 𝛽 . A tree 𝑡 ∈ 𝑇Σ is generated by the grammar
𝐺 (𝑡 ∈ 𝐿(𝐺)) when 𝑡 is the result of applying some sequence of production rules 𝑟0, . . . , 𝑟𝑛 ∈ 𝛿𝑛 to
the initial non-terminal 𝑆 .

Example 3.2 (RTG). For example, the syntax of programs considered in Figure 2a represents a
regular tree grammar. It consists of the nonterminals 𝐿, 𝑆 , and 𝐵; ranked symbols while2, x++0,
x--0, y++0, y--0, seq2, 0 < x0, and 0 < y0, and productions 𝐿 → while(𝐵, 𝑆), 𝑆 → x++, 𝑆 → x--,

, Vol. 1, No. 1, Article . Publication date: May 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

𝑆 → y++, 𝑆 → y--, 𝑆 → seq(𝑆, 𝑆), 𝐵 → 0 < x, and 𝐵 → 0 < y. In the examples in the paper, we
often drop the ranks of symbols and use infix notation to enhance readability.1

3.2 Semantics via Logical Relations and Fixed-point Logics

We begin by reviewing some necessary details of the fragments of first-order logic we use in
this paper. Given a (possibly multi-sorted) first-order theory T over a signature Σ, the syntax of
formulas and terms are given by the following grammar:

𝜑 ::= 𝑋 (𝑡1, . . . , 𝑡𝑟𝑘Σ (𝑋)) | 𝑝 (𝑡1, . . . , 𝑡𝑟𝑘Σ (𝑝)) | ¬𝜑1 | 𝜑1 ∧ 𝜑2 | ∀𝑥 : 𝑠 .𝜑1

𝑡 ::= 𝑥 | 𝑓 (𝑡1, . . . , 𝑡𝑟𝑘Σ (𝑓))
where 𝑥 and 𝑋 are term and predicate variables, respectively; 𝑓 and 𝑝 are function and predicate
symbols of Σ; and 𝑠 is a sort of Σ. Disjunction, implication, existential quantification, etc. are omitted
from the syntax and may be defined as expected (e.g., 𝜑 ∨𝜓 ≜ ¬(¬𝜑 ∧ ¬𝜓)). We will use 𝜑 and𝜓
to refer to possibly quantified formulas, and 𝐹 and 𝐺 to refer to quantifier-free formulas. We use
FV (𝜑) and FV (𝑡) to denote the free variables of a formula and term, respectively. Given a formula
𝜑 , variable 𝑥 , and term 𝑡 , we use 𝜑 [𝑥 ↦→ 𝑡] to denote 𝜑 with every free occurrence of 𝑥 replaced
with 𝑡 . Additionally, for a set of variables 𝑋 , we use 𝜑 [𝑋 ↦→ 𝑐𝑥] to represent replacing every free
occurrence of each 𝑥 ∈ 𝑋 with a constant 𝑐𝑥 .
A constrained Horn clause (CHC) is a formula over some background theory of the form:

∀𝑥0, . . . , 𝑥𝑛 .𝑋0 (𝑥0) ← 𝑋1 (𝑥1) ∧ · · · ∧ 𝑋𝑛 (𝑥𝑛) ∧ 𝐹 (𝑥0, . . . , 𝑥𝑛), (11)

where each 𝑥𝑖 is a sequence of term variables, 𝑋𝑖 is a predicate variable, and 𝐹 is a constraint over
the variables in each predicate. In the remainder of the paper, we abuse notation and allow arbitrary
first-order terms to appear as arguments to each 𝑋𝑖 .
In the SemGuS framework originally defined by Kim et al. [2021], the semantics of programs

in the language defined by the regular tree grammar is provided by defining a logical relation
and using a least-fixed-point logic, namely CHCs over some theory, to define the elements of the
relation by giving rules for each of the productions of the grammar. As discussed in Section 2.5, in
our work, we use a logic that is more expressive than CHCs to define the elements of the relation—in
particular, relations can appear both positively and negatively in the premises of a rule.

Definition 3.3 (SemGuS
𝜇
semantics). Given a first-order theory T and regular tree grammar

𝐺 = ⟨𝑁, Σ, 𝑆,𝑇 , 𝑎, 𝛿⟩ a semantics for 𝐺 is a pair
〈
SEM, J·K

〉
where SEM maps each non-terminal

𝐴 ∈ 𝑁 to a non-empty finite set of uninterpreted relations (SEM𝐴 = {Sem1
𝐴
, . . . , Sem𝑛

𝐴
}) and J·Kmaps

each production rule𝐴0 → 𝜎𝑖 (𝐴1, . . . , 𝐴𝑖) of type (𝜏0, . . . , 𝜏𝑖) and semantic relation Sem
𝑗

𝐴0
∈ SEM𝐴0

to a formula of the form Sem
𝑗

𝐴0
(𝑡𝐴0 , Γ

0, 𝑗 , Υ0) ← 𝜑 such that:
• 𝜑 is a (possibly quantified) T formula,
• 𝑡𝐴0 is a variable representing elements of 𝐿(𝐴0), Υ0 is a variable of type 𝜏0, and Γ0, 𝑗 are
variables representing state,
• 𝜑 ’s free variables belong to Γ0, 𝑗 , Υ0, or {𝑡𝐴0 }, and
• For each Sem

𝑙
𝐴𝑘
(𝑡𝐴𝑘

, Γ𝑘,𝑙 , Υ𝑘) appearing in 𝜑 :
– 0 ≤ 𝑘 ≤ 𝑖 and Sem

𝑙
𝐴𝑘
∈ SEM𝐴𝑘

and
– 𝑡𝐴𝑘

, Υ𝑘 , and Γ𝑘,𝑙 are defined analogously to 𝑡𝐴0 , Υ0, Γ0, 𝑗 .

1The grammars used in the paper are referred to at various places as “grammars” or “regular-tree grammars” (Defn. 3.1).
The trees/terms in the language of a grammar would be represented using algebraic data types. In the logics used in the
paper (CHCs, co-CHCs, and 𝜇CLP), we implicitly assume that one can use values in the algebraic data type to express
tree-valued constants.

, Vol. 1, No. 1, Article . Publication date: May 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Verifying Solutions to Semantics-Guided Synthesis Problems 11

Example 3.4. Consider the semantics Semloop =
〈
SEM, J·K

〉
in Figure 2d. Each non-terminal

is mapped to a single semantic relation (i.e., SEM𝐿 = {Sem𝐿}, SEM𝑆 = {Sem𝑆 }, and SEM𝐵 =

{Sem𝐵}). The semantic function J·K maps each semantic relation Sem𝐴 and production rule 𝐴→
𝜎𝑖 (𝐴1, . . . , 𝐴𝑖) to the semantic relation whose head is of the form Sem𝐴 (𝜎𝑖 (𝑡1, . . . , 𝑡𝑛), Γ, Υ). For
example, J0 < xKSem𝐵

is the rule Sem𝐵 (0 < x, 𝑥,𝑦, 𝑏) ← 0 < 𝑥 .

Our semantics generalizes the semantic rules considered by Kim et al. [2021] in two ways:
(1) It allows each nonterminal to be associated withmultiple semantic relations—e.g., to describe

the multiple relations appearing in the example from Figure 3.
(2) The rules defining the semantic relations are expressed in a fragment of first-order logic

that goes beyond CHCs—e.g., to describe the rules that define Reach𝑇 used in Figure 3..
If we restrict our semantic definition to have a single semantic relation per non-terminal and to
rules of the form Sem𝐴 (𝑡𝐴, Γ, Υ) ← 𝜑 , where 𝜑 contains only existential quantification and positive
occurrences of semantic relations, then our definition is equivalent to the semantics considered in
SemGuS [Kim et al. 2021]. Note that, while we allow only one rule per production per semantic
relation, we do allow for the disjunction of semantic relations within the premise of a rule, thereby
recovering equivalent expressiveness to allowing multiple rules per production rule. The robot-
reachability synthesis problem considered in Figure 3 cannot be encoded in SemGuS, but can be
encoded in SemGuS𝜇 .

3.3 Specifications and SemGuS
𝜇
Problems

Now that we have a way to define the syntax and semantics of the programming language over
which we are trying to synthesize programs, all that is missing to define a SemGuS problem is the
specification we want the synthesized program to satisfy.

Definition 3.5 (SemGuS
𝜇
problem, solution, validity, realizable). A SemGuS𝜇 problem is a tuple

P =
〈
𝐺 = ⟨𝑁, Σ,𝑇 , 𝑎, 𝛿⟩ ,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
, where

• 𝐺 is a regular tree grammar.
•

〈
SEM, J·K

〉
is a semantics for 𝐺 .

• 𝐹 is a finite set of functions we want to synthesize—pairs of the form ⟨𝑓 , 𝐴⟩ where 𝑓 is
a variable representing a procedure that we want to synthesize, and 𝐴 ∈ 𝑁 is the root
nonterminal from which 𝑓 is to be derived—i.e., the solution for 𝑓 must be a tree 𝑡 ∈ 𝐿(𝐴).
• 𝜑 a specification in the theory T such that

– The free variables of 𝜑 must be functions to synthesize, FV (𝜑) ⊆ {𝑓 : ⟨𝑓 , 𝐴⟩ ∈ 𝐹 } and
– For any ⟨𝑓 , 𝐴⟩ ∈ 𝐹 , 𝑓 appears only in atoms of the form Sem

𝑖
𝐴
(𝑓 , Γ, Υ) where Sem𝑖

𝐴
∈

SEM𝐴.
For a semantics

〈
SEM, J·K

〉
, an interpretation 𝜌 is a function that maps each semantic relation

Sem
𝑙
𝐴
(𝑡, Γ, Υ) ∈ SEM to a formula whose free variables are Γ ∪ Υ ∪ {𝑡}. The interpretation SEM

LFP

is the interpretation that maps each semantic relation to its least fixed point.
A solution to the SemGuS𝜇 problem P is a function 𝑆 that maps each ⟨𝑓 , 𝐴⟩ ∈ 𝐹 to a tree 𝑡 ∈ 𝐿(𝐴).

The solution 𝑆 is valid when SEM
LFP |= 𝜑 [⟨𝑓 , 𝐴⟩ ∈ 𝐹 .𝑓 ↦→ 𝑆 (𝑓)]. Note that the values 𝑆 (𝑓) being

substituted into the formula are program-valued constants represented as terms in the algebraic
data type for 𝐺 . Moreover, by the last case of Definition 3.5, each occurrence of 𝑓 in 𝜑 is in an
atom of the form Sem

𝑖
𝐴
(𝑓 , Γ, Υ) where Sem𝑖

𝐴
∈ SEM𝐴. Consequently, in the resulting formula, each

such program-valued constant will be interpreted according to the least fixed point of a semantic
relation of an appropriate kind. Note that, while SEMLFP appears to use only least fixed points,
because we allow semantic relations to appear negated within the premise of a semantic rule,

, Vol. 1, No. 1, Article . Publication date: May 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

SEM
LFP represents arbitrarily nested greatest and least fixed points whose top-level fixed point is a

least fixed point. We say that P is realizable if there exists a valid solution to P.
For example, consider the semantic rules Sem𝐴 (𝑥) ← Sem𝐴 (𝑥) ∨ ¬Sem𝐵 (𝑥) and Sem𝐵 (𝑥) ←

Sem𝐵 (𝑥) ∨ ¬Sem𝐴 (𝑥)—recall Figure 3d, whose semantics follows a similar pattern. Computing the
least fixed point of Sem𝐴 requires first computing the greatest fixed point of Sem¬

𝐵
, and similarly

the least fixed point of Sem𝐵 requires first computing the greatest fixed point of Sem¬
𝐴
. That is, the

least fixed-point of Sem𝐴 requires computing the fixed-point of the following fixed point equations
Sem𝐴 (𝑥) =𝜇 Sem𝐴 (𝑥) ∨ Sem¬𝐵𝑥 and Sem

¬
𝐵
(𝑥) =𝜈 Sem

¬
𝐵
(𝑥) ∧ Sem𝐴 (𝑥), and similarly the least fixed-

point of Sem𝐵 can be computed using the fixed point equations Sem𝐵 (𝑥) =𝜇 Sem𝐵 (𝑥) ∨ Sem¬𝐴𝑥 and
Sem

¬
𝐴
(𝑥) =𝜈 Sem

𝑛
𝐴
𝑒𝑔(𝑥) ∧ Sem𝐵 (𝑥).

Example 3.6. Consider the SemGuS problem ⟨𝐺max2, Semmax2,max2, 𝜑max2⟩ and candidate so-
lution 𝑠max2 in Figure 1. The interpretation SEM

LFP maps Sem𝑆 (𝑠max2, 𝑥,𝑦, 𝑥
′, 𝑦′) to its least fixed

point, which is the formula 𝜑SEM𝑠
max2

we computed in Equation (3) to capture the semantics of 𝑠max2 .
As such, we conclude that SEMLFP |= 𝜑max2 [max2 ↦→ 𝑠max2].

4 VERIFYING CANDIDATE PROGRAMS

This section formalizes the four methods used in Section 2 to verify that a program is a valid
solution to a SemGuS problem. Each technique encodes when the program is valid solution to the
SemGuS problem in a fragment of first-order logic. We describe each of the four encodings, and
characterize the kinds of SemGuS verification problems on which they can be applied (Sections 4.1
to 4.3). Additionally, we prove that the SemGuS𝜇 framework described in Section 3 can be used
to define verification problems that require the full capabilities of 𝜇CLP. We now describe each
encoding in turn. In the remainder of this section, we consider a fixed SemGuS𝜇 problem P =〈
𝐺 = ⟨𝑁, Σ, 𝑆,𝑇 , 𝑎, 𝛿⟩ ,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
and candidate solution 𝑃 .

4.1 Encoding Nonrecursive SemGuS
𝜇
Verification Problems withQuantified SMT

In Section 2.1, we were able to produce a first-order-logic formula that is free of any semantic
relations and is satisfiable exactly when 𝜑max2 is a valid solution to the SemGuS problem displayed
in Figure 1. We could obtain such a formula because the derivation tree of the semantics of 𝜑max2 is
finite. To formalize this intuition, we define two auxiliary notions: when a semantic relation is non-
recursive on tree 𝑡 , and when a semantic relation is a 𝑡-ancestor of another semantic relation—i.e.,
when the semantic relations are not recursive on the program term.

Definition 4.1 (𝑡-ancestor, non-recursive on 𝑡). Let 𝐴 ∈ 𝑁 be any non-terminal, 𝑡 ∈ 𝐿(𝐴) be a
tree of the form 𝑡 = 𝜎𝑖 (𝑡1, . . . , 𝑡𝑖) for some production rule 𝐴→ 𝜎𝑖 (𝐴1, . . . , 𝐴𝑖), semantic relation
Sem𝐴 ∈ SEM𝐴 of 𝐴, and J𝐴→ 𝜎𝑖 (𝐴1, . . . , 𝐴𝑖)KSem𝐴

= Sem𝐴 (𝑡, Γ, Υ) ← 𝜑 .
We say that a semantic relation Sem′

𝐴
∈ SEM𝐴 is a 𝑡-ancestor of Sem𝐴 if and only if (i) Sem′

𝐴
(𝑡, Γ, Υ)

appears in the antecedent 𝜑 for some values of Γ and Υ, or (ii) there is some symbol Sem′′
𝐴
(𝑡, Γ, Υ)

that appears in 𝜑 and Sem
′
𝐴
is a 𝑡-ancestor of Sem′′

𝐴
.

We say that Sem𝐴 is non-recursive on 𝑡 if (i) Sem𝐴 is not a 𝑡-ancestor of itself, and (ii) for each
Sem𝐴 𝑗

(𝑡 𝑗 , Γ, Υ) appearing in 𝜑 , Sem𝐴 𝑗
is non-recursive on 𝑡 𝑗 . If Sem𝐴 is non-recursive on 𝑡 then for

any Γ and Υ, the derivation tree of Sem𝐴 (𝑡, Γ, Υ) has finite height.
Example 4.2 (Non-recursive on t). Consider the max2 example from Section 2.1. The semantics

Sem𝑆 is non-recursive on the candidate solution 𝑠max2 = Ite (x < y) (x = y) (x = x) (as well
as every other tree derivable from grammar 𝐺max2). As shown in Figure 1d, every occurrence of a
semantic relation within the premise of a semantic rule is applied to a structurally smaller term of
the language 𝐺max2 .

, Vol. 1, No. 1, Article . Publication date: May 2024.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Verifying Solutions to Semantics-Guided Synthesis Problems 13

Definition 4.3 defines the formula of atoms of the form Sem𝐴 (𝑡, Γ, Υ) by replacing the atom with
the premise of the rule defining it.

Definition 4.3 (Formula of). Assume that we are given a non-terminal 𝐴 ∈ 𝑁 , a semantic relation
Sem𝐴 ∈ SEM𝐴, and a production 𝐴 → 𝜎𝑖 (𝐴1, . . . , 𝐴𝑛) ∈ 𝛿 . If J𝐴 → 𝜎𝑖 (𝐴1, . . . , 𝐴𝑛)KSem𝐴

is of the
form Sem𝐴 (𝑡, Γ, Υ) ← 𝜑 , then the formula of Sem𝐴 (𝑡 ′, Γ′, Υ′) (denoted by 𝜑-of (Sem𝐴 (𝑡 ′, Γ′, Υ′))) is
𝜑 [𝑡 ↦→ 𝑡 ′, Γ ↦→ Γ′, Υ ↦→ Υ′], which replaces the formal arguments of Sem𝐴 with the actual argument
of the application.

We now turn to defining the procedure smt-formula-of that encodes that a solution 𝑃 is valid
for a SemGuS𝜇 problem (where the semantics is non-recursive on 𝑃) into first-order logic without
fixed points (i.e., quantified SMT formulas). smt-formula-of repeatedly replaces every occurrence
of a semantic relation with the premise of the rule that defines it.

1 Procedure smt-formula-of (P =
〈
𝐺,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
, 𝑆)

2 rules← ⊤ // empty set of rules to begin with

3 𝜑 ← 𝜑 [⟨𝑓 , 𝐴⟩ ∈ 𝐹 .𝑓 ↦→ 𝑆 (𝑓)] // substitute solution into specification

4 foreach Sem𝐴 (𝑡, Γ, Υ) appearing in 𝜑 do
5 𝜓 ← 𝜑-of (Sem𝐴 (𝑡, Γ, Υ)) // repeatedly replace semantic relations with their def.

6 while Sem𝐴′ (𝑡 ′, Γ′, Υ′) appears in𝜓 do
7 𝜓 ← 𝜓 [Sem𝐴′ (𝑡 ′, Γ′, Υ′) ↦→ 𝜑-of (Sem𝐴′ (𝑡 ′, Γ′, Υ′))]
8 rules← rules ∧ (Sem𝐴 (𝑡, Γ, Υ) ⇔ 𝜓) // update rules to add definition for Sem𝐴

9 return ⟨rules, 𝜑⟩ // rules
LFP |= 𝜑 if and only if 𝑆 is valid solution to P

Applying smt-formula-of to the verification problem in Section 2.1 yields the formula in
Equation (1). The following theorem states under which conditions smt-formula-of (P, 𝑃) returns
a formula that is satisfiable if and only if 𝑃 is a valid solution to P.

Theorem 4.4 (smt-formula-of is sound). For any SemGuS
𝜇

problem P =〈
𝐺 = ⟨𝑁, Σ, 𝑆,𝑇 , 𝑎, 𝛿⟩ ,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
and solution P of P, if Sem𝐴 is non-recursive on P (𝑓)

for each occurrence of Sem𝐴 (𝑓 , Γ, Υ) within the specification 𝜑 , then smt-formula-of (P, P) is valid
if and only if P is a valid solution of P.

4.2 Encoding CHC-like SemGuS
𝜇
Verification Problems with CHCs and Co-CHCs

In Sections 2.2 and 2.3, we saw how to encode the SemGuS verification problem from Figure 2 into
the CHC and co-CHC fragments of first-order logic when using, respectively, the specifications
𝜑loop from Figure 2c and 𝜑 tot

loop
from Equation (4). In this section, we formalize when and how a

SemGuS verification problem may be encoded with CHCs or coCHCs.
To encode the verification problem into either a set of CHCs or coCHCs, we require the semantics

of the solution to be equivalent to a set of CHCs (i.e., formulas of the form described in Equation (11)).
In this section, we also consider the co-CHC fragment of first-order logic. A co-CHC is a formula
of the form:

∀𝑥0, . . . , 𝑥𝑛 . 𝑅0 (𝑥) ⇒ 𝑅1 (𝑥1) ∨ · · · ∨ 𝑅𝑛 (𝑥𝑛) ∨ 𝐹 (𝑥0, . . . , 𝑥𝑛),
where each component is as described when defining CHCs (cf. Equation (11)). Note that the
definitions presented here are logically equivalent to the typical definition used in constraint logic
programming [Unno et al. 2023]. For CHCs (respectively coCHCs) the decision problem of interest
is “given a set of CHCs (respectively coCHCs) and a query formula of the form ∀𝑥 .𝑅(𝑥) ⇒ 𝜑

(respectively ∀𝑥 . 𝜑 ⇒ 𝑅(𝑥)), determine if the query is derivable from the set of CHCs (resp.

, Vol. 1, No. 1, Article . Publication date: May 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

coCHCs).” It is known that this decision problem is equivalent to determining if some interpretation
of the uninterpreted relations satisfies each rule and the query formula [Bjørner et al. 2013].
Furthermore, this decision problem is also equivalent to determining if the least (respectively
greatest) interpretation (fixed-point) that satisfies all rules also satisfies the given query [Hetzl and
Kloibhofer 2021]. We use this final notion to formulate our verification procedures chc-of and
co-chc-of.

Definition 4.5 (CHC-like). Let 𝐴 ∈ 𝑁 be any non-terminal, 𝑡 ∈ 𝐿(𝐴) be a tree of the form
𝑡 = 𝜎𝑖 (𝑡1, . . . , 𝑡𝑖) for some production rule 𝐴→ 𝜎𝑖 (𝐴1, . . . , 𝐴𝑖), Sem𝐴 ∈ SEM𝐴 a semantic relation
of 𝐴, and J𝐴→ 𝜎𝑖 (𝐴1, . . . , 𝐴𝑖)KSem𝐴

= Sem𝐴 (𝑡, Γ, Υ) ← 𝜑 .
We say the rules defining Sem𝐴 are CHC-like for 𝑡 if and only if (i) 𝜑 has no negative occurrences

of a semantic relation, (ii) 𝜑 contains no universal quantifiers, and (iii) for every Sem𝐴 𝑗
(𝑡 𝑗 , Γ𝑗 , Υ𝑗)

appearing in 𝜑 , the rules defining Sem𝐴 𝑗
are CHC-like for 𝑡 𝑗 .

For example, the rules defining both Semmax2 and Semloop in Figures 1d and 2d are CHC-like
(for any program within their respective grammars), while the rules for SemBuchi in Figure 3d are
not. We now define the procedure chc-of, which encodes as a set of CHCs the property that a
solution 𝑃 is valid for a SemGuS𝜇 problem (where the semantics is CHC-like for 𝑃). We first define
an auxillary function rules-of that, given a semantic relation Sem𝐴 and tree 𝑡 ∈ 𝐿(𝐴), returns the
disjunctive normal form (dnf) of the rules defining Sem𝐴 for the root production of 𝑡—if Sem𝐴 is
CHC-like then each disjunct of the dnf of the rules defining it a CHC. That is, rules-of (Sem𝐴, 𝑡) =
{Sem𝐴 (𝑡, Γ, Υ) ← 𝜓 : 𝜓 ∈ dnf (𝜑)}, where Sem𝐴 (𝑡, Γ, Υ) ← 𝜑 = J𝐴 → 𝜎𝑖 (𝐴1, . . . , 𝐴𝑖)KSem𝐴

and
𝐴→ 𝜎𝑖 (𝐴1, . . . , 𝐴𝑖) is the root production of 𝑡 . The chc-of procedure produces a set of CHCs by
effectively performing a breadth-first search to find each of the rules needed to define the semantics
of each of the candidate programs.

1 Procedure chc-of (
〈
𝐺 = ⟨𝑁, Σ, 𝑆,𝑇 , 𝑎, 𝛿⟩ ,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
, 𝑆)

2 rules← ⊤ ;
3 𝑄 ← {⟨Sem𝐴, 𝑡⟩ : Sem𝐴 (𝑡, Γ, Υ) appears in 𝜑} ; // Queue of relations that need defining

4 while 𝑄 ≠ ∅ do
5 ⟨Sem𝐴, 𝑡

′⟩ ← pick 𝑄 ;
6 rules

′ ← rules-of (Sem𝐴, 𝑡
′) ; // Definition of Sem𝐴 for 𝑡 ′ as a set of CHCs

7 𝑄 ← 𝑄 ∪ {
〈
Sem𝐴 𝑗

, 𝑡 𝑗
〉

: Sem𝐴 𝑗
(𝑡 𝑗 , Γ, Υ) appears negatively in rule[𝑡 ↦→ 𝑡 ′]

8 for some rule in rules
′} ;

9 rules← rules ∧∧ rules
′ ; // Add rules defining Sem𝐴 for 𝑡 ′ to rules

10 𝜓 ← 𝜑 [⟨𝑓 , 𝐴⟩ ∈ 𝐹 .𝑓 ↦→ 𝑆 (𝑓)];
11 return ⟨rules,𝜓 ⟩ ; // rules

LFP |= 𝜓 if and only if 𝑆 is a valid solution to P

The procedure co-chc-of is nearly identical to chc-of. The procedure uses the auxiliary function
dual(𝜑) = ¬𝜑 [Sem𝐴 (𝑡, Γ, Υ) ↦→ ¬Sem¬𝐴 (𝑡, Γ, Υ)] that computes the dual of the input formula (i.e., if𝜑
is a CHC then dual(𝜑) is a co-CHC). The co-chc-of procedure changes lines 2 and 9. Line 2 becomes
𝜑 ← dual(𝜑 [⟨𝑓 , 𝐴⟩ ∈ 𝐹 .𝑓 ↦→ 𝑃 (𝑓)]) and line 9 becomes 𝜑 ← 𝜑 ∧ {dual(rule) : rule ∈ rules′}.

Finally, if the specification𝜑 contains both positive and negative occurrences of semantic relations,
but can be split into two specification 𝜑+ and 𝜑− that, respectively, contain only positive and only
negative occurrences of semantic relations, then 𝜑 can be encoded into two separate problems using
the above two encodings. In Theorem 4.6, we state under which conditions chc-of and co-chc-of
are sound.

, Vol. 1, No. 1, Article . Publication date: May 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Verifying Solutions to Semantics-Guided Synthesis Problems 15

Theorem 4.6 (chc-of and co-chc-of are sound.). For any SemGuS
𝜇

problem P =〈
𝐺 = ⟨𝑁, Σ, 𝑆,𝑇 , 𝑎, 𝛿⟩ ,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
and solution P of P, if for each occurrence of Sem𝐴 (𝑓 , Γ, Υ)

within the specification 𝜑 , it appears negatively (respectively positively) and the rules defining Sem𝐴

are CHC-like for P (𝑓), then the query returned by chc-of (P, P) (respectively co-chc-of (P, P)) is
valid if and only if P is a valid solution of P.

Conversely, in Theorem 4.7, we prove that, in general, a more expressive fragment of first-order
logic is required to verify solutions of an arbitrary SemGuS problems. Specifically, a fragment of
the 𝜇CLP calculus that combines both the CHC and coCHC fragments of first-order logic.

Theorem 4.7 (Verification of Semgus is not reducible to (co-)CHC Satisfiability). There
exists a program 𝑡 and SemGuS problem Sy such that verifying 𝑡 satisfies Sy cannot be reduced to

satisfiability of Constrained Horn Clauses nor coConstrained Horn Clauses.

4.3 Encoding all SemGuS
𝜇
Verification Problems with 𝜇CLP

In Sections 2.4 and 2.5, we examined two SemGuS verification problems for which there is no
possible encoding to fixed-point-free formulas, CHCs, or coCHCs. Instead, these problems were
encoded into a fragment of first-order logic, 𝜇CLP, that allows defining both greatest and least
fixed-points. Unlike the previous encodings, for any SemGuS𝜇 problem P one can always use 𝜇CLP
to encode that 𝑃 is a valid solution to P.
A 𝜇CLP formula is a sequence of formulas of the form:

𝑋0 (𝑥0) =fix0 𝜑0 . . . 𝑋𝑛 (𝑥𝑛) =fix
n

𝜑𝑛,

where each 𝑋𝑖 is an uninterpreted relation, 𝑥𝑖 is a sequence of term variables, and the 𝜑𝑖 are
formulas within some background theory whose free variables are 𝑥𝑖 and which may include
positive occurrences of the uninterpreted relations 𝑋0, . . . , 𝑋𝑛 . Each fix𝑖 is either 𝜇 or 𝜈 referring
to whether or not the equation 𝑋𝑖 (𝑥𝑖) =fix𝑖

𝜑𝑖 should represent a least or greatest fixed point,
respectively. We refer the reader to Unno et al. [2023] for a detailed formalization of 𝜇CLP.
In the SemGuS𝜇 semantics (Definition 3.5), every semantic relation’s definition is oriented as

a least fixed point. However, our semantics does allow one to introduce greatest fixed-points by
taking the negation of a semantic relation. We now turn to defining muclp-of, which encodes as a
𝜇CLP query the property that a solution 𝑃 is valid for a SemGuS𝜇 problem P. The procedure is
again similar to chc-of and co-chc-of, in that it performs a breadth-first search over the semantic
relations to produce the resulting 𝜇CLP query. For a formula 𝜑 , we use Norm(𝜑) to denote the
formula 𝜑 wherever a negative occurrence of Sem𝐴 (𝑡, Γ, Υ) is replaced by ¬Sem¬

𝐴
(𝑡, Γ, Υ).

Theorem 4.8 states that muclp-of (𝑠)oundly encodes any SemGuS and SemGuS𝜇 problem into a
validity query within the 𝜇CLP calculus.

Theorem 4.8 (muclp-of is sound). For any SemGuS
𝜇
problem P =

〈
𝐺,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
and

solution P of P, the query returned by muclp-of (P, P) is valid if and only P is a valid solution of P.

Theorem 4.9, states that the SemGuS𝜇 semantics can express any 𝜇CLP query—i.e., that any 𝜇CLP
validity query can be equivalently reduced to a SemGuS𝜇 verification problem. Thus, SemGuS𝜇 can
encode any problem that can be encoded within the 𝜇CLP calculus.

Theorem 4.9 (SemGuS𝜇 semantics and 𝜇CLP are eqally expressive). For every 𝜇CLP query

⟨𝜑, preds⟩, there is some SemGuS problem P and solution 𝑃 ∈ 𝐿(𝐺P) such that ⟨𝜑, preds⟩ is valid if
and only if 𝑃 is a valid solution to P.

Conversely, in Theorem 4.10, we state that verification for SemGuS problems does not require
the full generality of 𝜇CLP. Specifically, SemGuS verification problems do require a fragment

, Vol. 1, No. 1, Article . Publication date: May 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

1 Procedure muclp-of (P =
〈
𝐺,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
, 𝑆)

2 rules← ⊤ ;
3 𝑄 ← {⟨Sem𝐴, 𝑡, 𝜇⟩ : Sem𝐴 (𝑡, Γ, Υ) appears in 𝜑}∪
4 {⟨Sem𝐴, 𝑡, 𝜈⟩ : Sem¬

𝐴
(𝑡, Γ, Υ) appears in 𝜑} ;

5 while 𝑄 ≠ ∅ do
6 ⟨Sem𝐴, 𝑡

′, fix⟩ ← pick 𝑄 ;
7 rule← rules-of (Sem𝐴, 𝑡

′) ;
8 if fix = 𝜇 then
9 rule← Norm(rule) ; // Compute the rule as a least fixed point

10 else
11 rule← Norm(dual(rule)) ; // Compute the rule as a greatest fixed point

12 𝑄 ← 𝑄 ∪ {
〈
Sem𝐴 𝑗

, 𝑡 𝑗 , 𝜇
〉

: Sem𝐴 𝑗
(𝑡 𝑗 , Γ, Υ) appears in rule[𝑡 ↦→ 𝑡 ′]};

13 𝑄 ← 𝑄 ∪ {
〈
Sem𝐴 𝑗

, 𝑡 𝑗 , 𝜈
〉

: Sem¬
𝐴 𝑗
(𝑡 𝑗 , Γ, Υ) appears in rule[𝑡 ↦→ 𝑡 ′]} ;

14 rules← rules ∧ rule ;
15 𝜓 ← Norm(𝜑 [⟨𝑓 , 𝐴⟩ ∈ 𝐹 .𝑓 ↦→ 𝑆 (𝑓)]) ;
16 return ⟨rules,𝜓 ⟩ ; // rules

FP |= 𝜓 if and only if 𝑆 is a valid solution to P

Table 1. Summary of conditions when each encoding may be used to soundly verify that a program satisfies

a SemGuS
𝜇
problem.

Encoding Condition FOL Fragment

smt-formula-of The semantics of the program is non-recursive (i.e., has a
finite derivation tree).

SMT

chc-of The semantics of the program is CHC-like and semantic
relations appear only negatively within the specification.

CHC

co-chc-of The semantics of the program is CHC-like and semantic
relations appear only positively within the specification.

coCHC

muclp-of Always. 𝜇CLP

of first-order logic beyond both CHCs and coCHCs, but do not require arbitrary alternations of
greatest and least fixed points. As a corollary of Theorems 4.9 and 4.10, SemGuS𝜇 is more expressive
than SemGuS.

Theorem 4.10 (SemGuS and 𝜇CLP are not eqally expressive). Verifying solutions to SemGuS

problems can be encoded within a fragment of 𝜇CLP that uses at most one alternation between greatest

and least fixed points.

5 IMPLEMENTATION

We implement our algorithms in a tool, called Muse, which extends SemGuS to SemGuS𝜇 . Muse
supports all of the encoding schemes for the four classes of problems discussed in Section 4.
Muse is implemented in OCaml, and uses the following solvers: Z3 for SMT formulas [Bjørner

and Janota 2015], Spacer for CHCs [Komuravelli et al. 2013], and MuVal for co-CHCs and 𝜇CLP

, Vol. 1, No. 1, Article . Publication date: May 2024.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Verifying Solutions to Semantics-Guided Synthesis Problems 17

queries [Unno et al. 2023]. As part of implementing Muse, we extended the implementation of
MuVal to support algebraic data types, which we use to represent programs in first-order logic.
The remainder of this section describes three optimizations that one may apply to transform

the encodings described in Section 4. The goal of these optimizations is to use knowledge of the
SemGuS verification problem to make the resulting optimized queries simpler.

Reification of Terms in Semantic Relations. In our verification problems, we have a specific concrete
program (or programs) whose semantics we wish to capture using the semantic relations. The goal
of the first optimization reify is to eliminate program terms from the semantic relations, thus
removing the burden of forcing the solver to reason about terms using the theory of algebraic data
types.

Example 5.1. Consider the program 𝑡 ≡ x--; y++ from the language Imp
loop

described in Figure 2.
Below we depict the AST of 𝑡 and show the reified semantics of Semloop specialized to 𝑡 . Because
the program is known a priori, the semantics can be reified to remove the explicit AST-valued
argument in the different 𝑆𝑒𝑚 relations by introducing a new semantic relation for each node of
the AST.

seq

x-- y++
AST of x--; y++

Sem
x--; y++
𝑆

(𝑥,𝑦, 𝑥 ′, 𝑦′) ← Sem
x--
𝑆
(𝑥,𝑦, 𝑥 ′′, 𝑦′′) ∧ Sem𝑦++

𝑆
(𝑥 ′′, 𝑦′′, 𝑥 ′, 𝑦′)

Sem
x--
𝑆
(𝑥,𝑦, 𝑥 ′, 𝑦′) ← 𝑥 ′ = 𝑥 − 1 ∧ 𝑦 = 𝑦′

Sem
y++
𝑆
(𝑥,𝑦, 𝑥 ′, 𝑦′) ← 𝑥 ′ = 𝑥 ∧ 𝑦′ = 𝑦 + 1

More formally, the reified semantics introduces a new semantic relation for every sub-tree of the
program’s AST. Each occurrence of Sem𝐴 𝑗

(𝑡 𝑗 , Γ𝑗 , Υ𝑗) is then replaced by Sem
𝑡 𝑗

𝐴 𝑗
(Γ, Υ).

Definition 5.2 (Reified Semantics). Given a non-terminal 𝐴, a program 𝑡 ∈ 𝐿(𝐴), a semantic
relation Sem𝐴, and a set of semantic rules rules defining the semantics of Sem𝐴, the semantics

of Sem𝐴 reified to 𝑡 is a pair reify (rules, Sem𝐴, 𝑡) =
〈
SEM

reify, rulesreify
〉
such that SEMreify and

rules
reify are the least solution to the following rules:
(1) Sem

𝑡
𝐴
is a reified semantic relation (Sem𝑡

𝐴
∈ SEMreify),

(2) if Sem𝑡
𝐴
∈ SEM

reify is a reified semantic relation, 𝑡 is of the form 𝜎𝑖 (𝑡1, . . . , 𝑡𝑖), and there
is a rule of the form Sem𝐴 (𝑡, Γ, Υ) ← 𝜑 ∈ rules, then Sem

𝑡
𝐴
(Γ, Υ) ← 𝜑 [Sem𝐴 𝑗

(𝑡 𝑗 , Γ𝑗 , Υ𝑗) ↦→
Sem

𝑡 𝑗

𝐴 𝑗
(Γ𝑗 , Υ𝑗)] ∈ rulesreify is a reified semantic rule, and

(3) if Sem𝑡
𝐴
(Γ, Υ) ← 𝜑 ∈ rules

reify is a reified semantic rule and Sem
𝑡 𝑗

𝐴 𝑗
appears in 𝜑 , then

Sem
𝑡 𝑗

𝐴 𝑗
∈ SEMreify is a reified semantic relation.

Theorem 5.3 (Reification is sound). Given a formula 𝜑 and a set, rules, of semantic rules,

let 𝜓 be the formula in which every occurrence of Sem𝐴 (𝑡, Γ, Υ) is replaced by the reified seman-

tic relation Sem
𝑡
𝐴
(Γ, Υ), and rules

reify
is the conjunction of the reified semantic rules produced by

reify (rules, Sem𝐴, 𝑡) for each Sem𝐴 (𝑡, Γ, Υ) appearing in 𝜑 . The constraint 𝜑 is valid under the original

semantic rules rules if and only if𝜓 is valid under the reified semantic rules: rules |= 𝜑 ⇔ rules
reify |= 𝜓 .

Semantic Relation Inlining. In general, the MuVal solver that we use to solve 𝜇CLP queries scales
poorly in the number of relations used to define the semantics of a program. The goal of the
optimization inline is to eliminate semantic relations by inlining their meanings into a quantified
first-order formula.

The SMT encoding smt-formula-of in Section 2.1 can be seen as an application of inline that
eliminates semantic relations by inlining their meaning into a quantified first-order formula (i.e.

, Vol. 1, No. 1, Article . Publication date: May 2024.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

𝜑Semmax2
in Section 2.1). The optimization inline applies a similar insight to as many semantic

relations as possible to reduce the number of semantic relations that the final solver has to deal
with.

The inlining optimization inline, is implemented nearly identically to the smt-formula-of
encoding defined in Section 4.1. The only difference is the condition of the while loop on line 7
of smt-formula-of. When smt-formula-of is applied to a semantic relation that is recursive
over the program of interest, it will fail to terminate and generate an ever-growing formula. The
optimization inline instead uses the condition “there is some Sem𝐴′ (𝑡 ′, Γ′, Υ′) in𝜓 such that there
is no Sem𝐴′ (𝑡 ′, Γ′′, Υ′′) appearing in 𝜑-of (Sem𝐴′ (𝑡 ′, Γ′, Υ′)).” In essence, Sem𝐴′ does not recurse
directly on itself for the program 𝑡 ′. This condition ensures that inline will always terminate, and
can be used even when the semantic relation of interest is recursive on the program of interest.

Example 5.4. Continuing Example 5.1, the semantic-inlining optimization would yield a single
semantic relation Sem

x--; y++
𝑆

(𝑥,𝑦, 𝑥 ′, 𝑦′) ← ∃𝑥 ′′, 𝑦′′ .𝑥 ′′ = 𝑥 − 1 ∧ 𝑦′′ = 𝑦 ∧ 𝑥 ′ = 𝑥 ′′ ∧ 𝑦′ = 𝑦′′ + 1,
which inlines the definitions of both Sem

x--
𝑆

and Sem
y++
𝑆

into the definition of Semx--;y++
𝑆

.

Quantifier Elimination. In the above example, we see that inlining definitions can leave superfluous
quantifiers (e.g. ∃𝑥 ′′, 𝑦′′ . in Sem

x--; y++
𝑆

). Eliminating these unnecessary quantifiers using simple
quantifier-elimination methods can yield formulas that are easier for existing solvers to handle,
which often exhibit performance that degrades exponentially in the number of quantifier alter-
nations. The quantifier-elimination optimization applies quantifier elimination to the semantics
on a rule-by-rule basis. Continuing the above example, applying quantifier elimination yields a
quantifier-free formula defining Sem

x--; y++
𝑆

(𝑥,𝑦, 𝑥 ′, 𝑦′) ← 𝑥 ′ = 𝑥 − 1 ∧ 𝑦′ = 𝑦 + 1.

6 EXPERIMENTS

We evaluated Muse with respect to the following research questions:

Q1: How effective is Muse at verifying solutions to SemGuS𝜇 problems?
Q2: How effective are the optimizations from Section 5 at improving Muse’s performance?
Q3: Does Muse enable SemGuS synthesizers to handle problems with logical specifications?

All experiments were conducted on a desktop running Ubuntu 18.04 LTS, equipped with a 4-core
Intel(R) Xeon(R) processor running at 3.2GHz with 12GB of memory. Each experiment was repeated
three times with a timeout threshold of 5 minutes, with 6GB of allotted memory. We report the
average time for the three runs. For each benchmark, we ran the smt-formula-of, chc-of, and
muclp-of based solvers—we do not report co-chc-of because it also uses the MuVal 𝜇CLP solver
as its back-end and is therefore equivalent to muclp-of. (We are not aware of any specialized
co-CHC solvers that we could have used.)

6.1 Benchmarks

We collected 12 SemGuS problems—whose semantics and logical specificationwere expressedwithin
linear integer arithmetic—from the official SemGuS benchmarks (https://github.com/SemGuS-
git/Semgus-Benchmarks), along with 27 new SemGuS𝜇 problems and 107 problems from SyGuS.
For each problem, we designed one correct solution and one incorrect solution to assess our solver’s
ability to both prove and disprove whether a program is a correct solution. The total number of
problems is 146, and thus the total number of benchmarks is 292. We split our problems into four
suites (cf. Table 2).

The first suite SyGuS consists of 80 SemGuS versions of SyGuS problems in the CLIA track. The
majority of benchmarks in the CLIA track come from three families of benchmarks: ArraySearch,

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://github.com/SemGuS-git/Semgus-Benchmarks
https://github.com/SemGuS-git/Semgus-Benchmarks

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Verifying Solutions to Semantics-Guided Synthesis Problems 19

Table 2. All benchmarks, broken down by benchmark suite. For each solver, we list the number of benchmarks

to which it can be applied, the number of benchmarks solved, and the average time per solved instance. The

results given in the table are for the best configuration of each solver.

Suite Total smt-formula-of chc-of muclp-of Best
isSMT # Solved Time isCHC # Solved Time # Solved Time # Solved Time

SyGuS 160 160 104 0.42s 160 152 0.18s 111 15.89s 152 0.12s
SyGuS-Imp 54 27 27 0.07s 54 54 2.27s 28 1.32s 54 2.04s
FuncImp 38 12 12 0.07s 11 11 0.13s 35 4.26s 35 1.02s
Reach 40 0 – – 0 – – 40 0.66s 40 0.66s

Total 292 199 143 0.30s 225 216 0.70s 213 8.09s 281 0.68s

ArraySum, and ArrayMax. Each of these problems asks for an LIA term that computes a function
over a fixed-sized array.
The second suite SyGuS-Imp consists of 27 imperative versions of some of the ArraySearch,

ArraySum, and ArrayMax family of SyGuS problems. They are a family of SemGuS benchmarks—
for an imperative language using while loops, assignment, and conditionals—to perform the same
tasks in an imperative setting (similar to the one inFigure 1a). There are 27 benchmarks (for arrays
of size two to ten for each family of benchmark).

The third suite FuncImp consists of 19 simple imperative and functional program-synthesis tasks.
This suite of benchmarks consists of 19 SemGuS problems: two using the language from Figure 1;
ten using the loop and increment language from Figure 2; and seven using the simple deterministic
functional language modeling possible strategies for the reachability game from Figure 3.
The final suite Reach consists of 10 variations of reachability and Büchi games similar to the

one displayed in Figure 3 using different values for the parameters of the game (e.g., bounded vs.
unbounded regions, and whether or not the target was stationary). Büchi games are interesting for
Muse because the specifications require using both a least and greatest fixed point (in the form of a
negated relation).

6.2 Q1: Effectiveness of Muse

Table 2 presents the results of our experiments, summarized per benchmark suite, and provides
information about how the three encodings supported by Muse compare. Each column labeled by
a variant of Muse indicates the number of instances solved within the allotted time limit, together
with the average solving time. The first columns of the smt-formula-of and chc-of blocks also
specify how many instances fall within the fragment of first-order logic to which they can be
applied. We note that the chc-of variant solved the most instances, solving 216 instances taking on
average under one second. The muclp-of variant comes in a close second, solving 213 instances;
however, it averaged eight seconds per instance. Upon further investigation, we found that chc-of
solved 26 instances not solved by the other two variants, while muclp-of solved 56 instances that
were not and could not be solved by the other variants. Overall, 281 of the 292 benchmarks were
solved by at least one of the three solvers. For the benchmarks that all solvers could handle, chc-of
was on average 20X faster than smt-formula-of and 40X faster than muclp-of. smt-formula-of
was on average 2X faster than muclp-of. For each problem for which a solver terminated for both
the questions of verifying a correct solution and refuting an incorrect solution, proving that a
solution was correct was in general slower than proving that a solution was incorrect (avg. 10X
slower for chc-of, 3.6X slower for muclp-of, 0.74X slower for smt-formula-of).

, Vol. 1, No. 1, Article . Publication date: May 2024.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

0 50 100 150
0

50

100

Benchmark Count

Ti
m
e
to

so
lv
e
(s
)

Reify+Inline+QE
Reify+Inline
Reify+QE
Inline+QE

Base

(a) smt-formula-of

0 50 100 150 200
0

50

100

Benchmark Count

(b) chc-of

0 50 100 150 200
0

100

200

Benchmark Count

(c) muclp-of

Fig. 4. Three cactus plots, one per encoding, with one line per optimization configuration used. If a point

(𝑥,𝑦) appears along the line labeled by config, then config solved 𝑥 instances in under 𝑦 seconds. A line lower

and further to the right is better.

To answer Q1, the verification techniques implemented in Muse are effective and can verify
281/292 of our problem instances. Proving correctness of a solution is generally harder than proving
that a solution is incorrect.

6.3 Q2: Effectiveness of the Optimizations from Section 5

Figure 4 illustrates how the optimizations described in Section 5 affect the performance of each
encoding. Each of the three graphs in Figure 4 shows the results of an ablation study—i.e., we
compared the effectiveness of the optimizations by considering five configurations: no optimizations,
all optimizations, and three configurations in which a single optimization was disabled. The three
cactus plots show the performance for the three encodings in Section 4; the lines in each cactus plot
show the performance of the five considered optimization configurations. One solver is better than
another if its line is lower and to the right of the other solver’s line (i.e., it can solve more problems
in less time). For example, the smt-formula-of variant performed best using reification and
quantifier elimination. For all three encodings, the configurations using reification performed the
best, solving on average 4X the number of verification problems solved without reification. In-lining
and quantifier elimination do help somewhat; however, closer inspection of the results revealed
that attempting quantifier elimination on the larger formulas generated during the execution of
smt-formula-of can lead to poor results.

To answer Q2, the optimizations presented in Section 5 are very effective, with reification being
the most effective.

6.4 Q3: Integration with an Enumeration-Based SemGuS Synthesizer

To determine the effect that Muse has on synthesis of solutions to SemGuS problems, we incorpo-
rated Muse in the enumeration-based SemGuS solver Ks2 from (https://github.com/kjcjohnson/ks2-
mono). We evaluate the modified synthesizer on 112 SemGuS problems (i.e., each of the SemGuS
problems described in Section 6.1, excluding the “reach” category). For each SemGuS problem, we
provide 5 input-output examples alongside the logical specification. Ks2 is a top-down enumerative
solver that iteratively generates terms and checks the term against a set of input-output examples.
We modify Ks2 to incorporate our verifier Muse to check terms against the logical specification, and
to resume searching if the provided solution is incorrect. For each verification problem encountered,
we had Ks2 invoke the simplest solver (i.e., smt-formula-of for non-recursive solutions, chc-of

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://github.com/kjcjohnson/ks2-mono
https://github.com/kjcjohnson/ks2-mono

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Verifying Solutions to Semantics-Guided Synthesis Problems 21

Table 3. Results of running modified Ks2 on SemGuS benchmarks.

Suite SyGuS SyGuS-Imp FuncImp Total

Solved 10 25 10 45
Timed Out 1 2 10 13
Memed Out 54 0 0 54
Verification Calls 1210 367 53 1630

Time (s) 476.46 3319.77 48.14 3835.37
Verification Time (s) 453.33 3074.16 24.02 3545.51
Verif. Time / Call (s) 0.37 8.38 0.45 2.18

for CHC-like problems, and muclp-of for all others) with reification and predicate inlining (the
configuration that performed the best in Q2).
The results are summarized in Table 3. We found that Muse enabled Ks2 to solve 45 SemGuS

problems. For SemGuS problems that Ks2 did solve, Ks2 required on average 30.2 verification calls,
taking on average 2.18 seconds each. By incorporating Muse in Ks2, we enabled Ks2 to solve 35
SemGuS problems that no previous SemGuS solver could solve (we exclude the SyGuS benchmarks
because a SyGuS solver could solve such problems). We inspected the 67 SemGuS problems that
the modified Ks2 could not solve. The 55 SyGuS problems failed to enumerate the correct solution
within the time limit. One of the FuncImp benchmarks similarly timed out during enumeration. The
other 8 FuncImp and the 2 SyGuS-Imp problems that timed out during verification after enumerating
the correct solution. For the 2 SyGuS-Imp solutions and 5 of the FuncImp solutions, it was possible
to verify that they were correct using a different verifier configuration (i.e., additionally using
quantifier elimination), while the remaining 3 FuncImp could not be solved using any verifier
configuration within the half-hour time limit.
To answer Q3, by modifying Ks2 to incorporate Muse we are able to synthesize 45 verifiably

correct solutions, including 35 SemGuS problems that no previous SemGuS solver could solve. Of
the 67 problems that remained unsolved, only 11 timed out due to verification (of which 8 more
could be solved using the virtual best solver, which runs each verifier configuration in parallel and
returns once one variant terminates).

7 RELATEDWORK

Fixed-Semantics Program Verification. There is a large volume of work on automated verification
for programs within a fixed language semantics. The typical approach often depends on the form of
the language considered. For example, a popular verification methodology for imperative programs
is to generate verification conditions automatically, and use invariant-generation techniques to
satisfy those conditions [Gupta and Rybalchenko 2009; Henzinger et al. 2008; Leino 2010; McMillan
2006]. For functional languages, the typical approach uses type-based reasoning [Pereira and Ravara
2021; Unno et al. 2018; Xi 2002]. Unlike Muse, these approaches are not parameterized to support
reasoning for arbitrary user-defined semantics (e.g., via SemGuS𝜇), but can use domain-specific
techniques to obtain better performance.

Verification Frameworks. More closely related to our work is the line of work on verification
frameworks and intermediate verification languages. Stefănescu et al. [2016] describe how to create
an automated program verifier for arbitrary languages automatically, from an operational semantics
written in the K framework; the produced verifier is limited to defining reachability properties (i.e.,
program safety) and is not general enough to reason about termination and liveness properties. In a

, Vol. 1, No. 1, Article . Publication date: May 2024.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

similar vein is work on creating and using an intermediate language for verification, such as Boogie
[Barnett et al. 2006] or Why3 [Filliâtre and Paskevich 2013]. A key difference between what is
involved when working with those tools versus working with Muse is that with Boogie and Why3,
a language’s semantics is specified via a translational semantics, whereas with Muse a language’s
semantics is specified declaratively. With a translational semantics, one has to define a function that
walks over the abstract-syntax tree 𝑡 of a program, and constructs an appropriate Boogie/Why3
program whose meaning captures the semantics of 𝑡 . In contrast, with Muse, the semantics is
specified declaratively, using logical relations in SemGuS𝜇 , thus allowing one to model many
diverse scenarios (e.g., our robot example). Many systems have used Boogie as their intermediate
language, including Dafny [Leino 2010] and VCC [Cohen et al. 2009], Other similar systems include
Cameleer [Pereira and Ravara 2021] (on top of Why3) and various C analyzers built on top of the
FRAMA-C platform [Kirchner et al. 2015]. While intermediate verification languages allow the
reuse of verifiers for multiple languages, they generally support a single language paradigm (e.g,
object-oriented, functional, etc.) and a single verification strategy (e.g., pre/post conditions and
loop invariants) and thus may be difficult to use for a language based on a different paradigm. In
contrast, the SemGuS𝜇 framework uses a logic-based approach to specifying semantics, which
allows Muse to be applied to a wide variety of problems.

Logic-Based Verification. There is also a substantial body of work that uses fragments of first-
order logic to verify programs. A broad class of work considers programs represented as transition
formulas [Alberti et al. 2004; Arnold 1993; Baresi et al. 2012; Farzan and Kincaid 2017]. That is,
the verification task takes as input a formula modeling the transitions of the program. While
these techniques and ours all take as input a logical formalism describing the program of interest,
transition formula are monolithic formulas defined on a program-by-program basis, and differ from
the modular semantic relations—supplied on a per-language basis via SemGuS𝜇—used in Muse.
Another logic-based formalism uses answer-set programming to formulate verification questions
[Bromberger et al. 2021; Calvanese et al. 2013; Flederer et al. 2017]. A verifier based on answer-set
programming represents the program and its verification conditions in a declarative language (e.g.,
Prolog or Datalog).
Another line of work translates verification queries into validity (or satisfiability) queries in

fragments of first-order logic [Gurfinkel et al. 2015; Unno et al. 2021]. SeaHorn [Gurfinkel et al.
2015] compiles annotated C programs into a system of CHCs to discharge the generated verification
conditions. The work of Unno et al. [2021] formulates a number of program-verification tasks in
the pfwCSP fragment of first-order logic (a constraint language similar in expressiveness to 𝜇CLP).
These techniques are similar to the ones used in Muse in that they answer verification queries by
generating a logical query and using a solver to answer the query; however, the methods in these
other tools are defined for a fixed language (e.g., a fragment of C), whereas Muse is parameterized
to perform verification for whatever language is specified in the SemGuS𝜇 input.

8 CONCLUSION

The SemGuS framework [Kim et al. 2021] is becoming a standard for program synthesis, as happened
with the less expressive SyGuS framework. This paper presents the first domain-agnostic and solver-
agnostic methodology for verifying that a candidate solution is valid for a SemGuS problem. Our
technique reduces verification questions to validity questions in 𝜇CLP (a fragment of first-order
fixed-point logic that generalizes CHCs and co-CHCs), or validity questions in easier logics, when
possible. Our work fills an important gap in the pipeline of techniques needed to build practical
SemGuS synthesizers. One can now build solvers that synthesize solutions to SemGuS problems
involving complex specifications (existing tools could only support input/output examples) and

, Vol. 1, No. 1, Article . Publication date: May 2024.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Verifying Solutions to Semantics-Guided Synthesis Problems 23

verify whether these solutions are correct! While our tools can currently handle relatively small
programs, improvement to our framework will lead to improvements in any SemGuS solver.
Additionally, while functional and reactive synthesis have historically been considered as two

very separate problems, our newly proposed framework SemGuS𝜇 and our verification approaches
bring these forms of synthesis under the same umbrella, thus opening an exciting avenue of
opportunities for building synthesizers that handle both of these settings.

REFERENCES

Marco Alberti, Davide Daolio, Paolo Torroni, Marco Gavanelli, Evelina Lamma, and Paola Mello. 2004. Specification and
verification of agent interaction protocols in a logic-based system. In Proceedings of the 2004 ACM symposium on Applied

computing. 72–78.
Rajeev Alur, Salar Moarref, and Ufuk Topcu. 2018. Compositional and symbolic synthesis of reactive controllers for

multi-agent systems. Information and Computation 261 (2018), 616–633.
André Arnold. 1993. Verification and comparison of transition systems. In Colloquium on Trees in Algebra and Programming.

Springer, 121–135.
Luciano Baresi, Angelo Morzenti, Alfredo Motta, and Matteo Rossi. 2012. A logic-based semantics for the verification of

multi-diagram UML models. ACM SIGSOFT Software Engineering Notes 37, 4 (2012), 1–8.
Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino. 2006. Boogie: A modular reusable

verifier for object-oriented programs. In Formal Methods for Components and Objects: 4th International Symposium, FMCO

2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures 4. Springer, 364–387.
Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko. 2013. On solving universally quantified horn clauses. In Static

Analysis: 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings 20. Springer, 105–125.
Nikolaj S Bjørner and Mikolás Janota. 2015. Playing with Quantified Satisfaction. LPAR (short papers) 35 (2015), 15–27.
Martin Bromberger, Irina Dragoste, Rasha Faqeh, Christof Fetzer, Markus Krötzsch, and Christoph Weidenbach. 2021. A

datalog hammer for supervisor verification conditions modulo simple linear arithmetic. In International Symposium on

Frontiers of Combining Systems. Springer, 3–24.
Diego Calvanese, Giuseppe De Giacomo, Marco Montali, and Fabio Patrizi. 2013. Verification and synthesis in description

logic based dynamic systems. In International Conference on Web Reasoning and Rule Systems. Springer, 50–64.
Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas Santen, Wolfram Schulte, and

Stephan Tobies. 2009. VCC: A practical system for verifying concurrent C. In Theorem Proving in Higher Order Logics:

22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings 22. Springer, 23–42.
Loris D’Antoni, Qinheping Hu, Jinwoo Kim, and Thomas Reps. 2021. Programmable program synthesis. In Computer Aided

Verification: 33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I 33. Springer,
84–109.

Azadeh Farzan and Zachary Kincaid. 2017. Strategy synthesis for linear arithmetic games. Proceedings of the ACM on

Programming Languages 2, POPL (2017), 1–30.
Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—where programs meet provers. In Programming Languages

and Systems: 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings 22. Springer, 125–128.
Frank Flederer, Ludwig Ostermayer, Dietmar Seipel, and Sergio Montenegro. 2017. Source code verification for embedded

systems using prolog. arXiv preprint arXiv:1701.00630 (2017).
Sumit Gulwani. 2012. Synthesis from examples. InWAMBSE (Workshop on Advances in Model-Based Software Engineering)

Special Issue, Infosys Labs Briefings, Vol. 10. Citeseer.
Ashutosh Gupta and Andrey Rybalchenko. 2009. Invgen: An efficient invariant generator. In Computer Aided Verification:

21st International Conference, CAV 2009, Grenoble, France, June 26-July 2, 2009. Proceedings 21. Springer, 634–640.
Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. 2015. The SeaHorn verification framework. In

International Conference on Computer Aided Verification. Springer, 343–361.
Thomas A Henzinger, Thibaud Hottelier, and Laura Kovács. 2008. Valigator: A verification tool with bound and invariant

generation. In International Conference on Logic for Programming Artificial Intelligence and Reasoning. Springer, 333–342.
Stefan Hetzl and Johannes Kloibhofer. 2021. A fixed-point theorem for Horn formula equations. arXiv preprint

arXiv:2109.04633 (2021).
Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. 2021. Semantics-guided synthesis. Proceedings of the ACM

on Programming Languages 5, POPL (2021), 1–32.
Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2015. Frama-C: A software

analysis perspective. Formal aspects of computing 27 (2015), 573–609.

, Vol. 1, No. 1, Article . Publication date: May 2024.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M Clarke. 2013. Automatic abstraction in SMT-based
unbounded software model checking. In International Conference on Computer Aided Verification. Springer, 846–862.

K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correctness. In International conference on

logic for programming artificial intelligence and reasoning. Springer, 348–370.
Kenneth L McMillan. 2006. Lazy abstraction with interpolants. In Computer Aided Verification: 18th International Conference,

CAV 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings 18. Springer, 123–136.
Mário Pereira and António Ravara. 2021. Cameleer: A Deductive Verification Tool for OCaml. In Computer Aided Verification:

33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part II 33. Springer, 677–689.
Oleksandr Polozov and Sumit Gulwani. 2015. Flashmeta: A framework for inductive program synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
107–126.

Andrei Stefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu. 2016. Semantics-based program verifiers for
all languages. ACM SIGPLAN Notices 51, 10 (2016), 74–91.

Hiroshi Unno, Yuki Satake, and Tachio Terauchi. 2018. Relatively complete refinement type system for verification of
higher-order non-deterministic programs. Proceedings of the ACM on Programming Languages 2, POPL (2018), 1–29.

Hiroshi Unno, Tachio Terauchi, Yu Gu, and Eric Koskinen. 2023. Modular Primal-Dual Fixpoint Logic Solving for Temporal
Verification. Proceedings of the ACM on Programming Languages 7, POPL (2023), 2111–2140.

Hiroshi Unno, Tachio Terauchi, and Eric Koskinen. 2021. Constraint-based relational verification. In International Conference

on Computer Aided Verification. Springer, 742–766.
Hongwei Xi. 2002. Dependent types for program termination verification. Higher-Order and Symbolic Computation 15

(2002), 91–131.
Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Murphy Berzish, Julian Dolby, and Xiangyu Zhang. 2017.

Z3str2: an efficient solver for strings, regular expressions, and length constraints. Formal Methods in System Design 50
(2017), 249–288.

, Vol. 1, No. 1, Article . Publication date: May 2024.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Verifying Solutions to Semantics-Guided Synthesis Problems 25

A PROOFS OF THEOREMS

Theorem 4.4 (smt-formula-of is sound). For any SemGuS
𝜇

problem P =〈
𝐺 = ⟨𝑁, Σ, 𝑆,𝑇 , 𝑎, 𝛿⟩ ,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
and solution P of P, if Sem𝐴 is non-recursive on P (𝑓)

for each occurrence of Sem𝐴 (𝑓 , Γ, Υ) within the specification 𝜑 , then smt-formula-of (P, P) is valid
if and only if P is a valid solution of P.

Proof. The smt-formula-of procedure replaces the definition of each semantic relation ap-
pearing in the specification 𝜑 . The process works by performing a fixedpoint computation, re-
cursively replacing each occurrence of a semantic relation within a definition with the definition
of the semantic relation. That is it replaces each occurrence of Sem𝐴 (𝑡, Γ, Υ) with it’s definition
𝜑-of (Sem𝐴 (𝑡, Γ, Υ)). Clearly, each updates maintains the semantics of the semantic relation of
interest. That is, we are simply replacing occurrences of semantic relations with their definitions.
Finally, we must show that if Sem𝐴 is non-recursive on 𝑡 , then smt-formula-of terminates. Assume
not, then there must be some infinite sequences of substitutions that replace a semantic rule with
its definition. However, the semantics can only be applied to sub-terms of the program of interest 𝑡
(or to 𝑡 itself). If 𝑡 is strictly decreasing then clearly, smt-formula-of must terminate. If instead,
there is an infinite sequence of reductions using the same term 𝑡 , then this violates the assumption
that Sem𝐴 is non-recursive on 𝑡 . Thus we may conclude smt-formula-of terminates. □

Theorem 4.6 (chc-of and co-chc-of are sound.). For any SemGuS
𝜇

problem P =〈
𝐺 = ⟨𝑁, Σ, 𝑆,𝑇 , 𝑎, 𝛿⟩ ,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
and solution P of P, if for each occurrence of Sem𝐴 (𝑓 , Γ, Υ)

within the specification 𝜑 , it appears negatively (respectively positively) and the rules defining Sem𝐴

are CHC-like for P (𝑓), then the query returned by chc-of (P, P) (respectively co-chc-of (P, P)) is
valid if and only if P is a valid solution of P.

Proof. Let rules |= 𝜓 be the query returned by chc-of. We must prove that rulesLFP |= 𝜓 if and
only if SEMLFP |= 𝜑 . The chc-of procedure proceeds by performing a search over the semantics and
tree 𝑡 jointly to find compute a set of CHCs capturing the semantics of 𝑡 At each iteration chc-of
picks a semantic relation Sem𝐴 and subtree 𝑡 ′ and computes a set of CHCs capturing logically
equivalent to the rule defining Sem𝐴 (𝑡, Γ, Υ). Then each semantic relation sub-tree pair appearing
any the rule is added to the queue so that the semantics for the full tree and not just the root
production rule. At each iteration, the CHC rules computed by chc-of are computed from the
cubes of the disjunctive nromal form of the single rule defining the semantic relation Sem𝐴 for the
root production rule of the tree 𝑡 . Clearly, these rules are logically equivalent to the single rule
they were derived for (i.e. it is easy to show (𝑎 ← 𝑏) ∧ (𝑎 ← 𝑐)) ⇔ (𝑎 ← (𝑏 ∧ 𝑐)). Thus once the
algorithm terminates, we are guaranteed that the resulting rules are logically equivalent to the
original semantic relations. The proof of coCHCs proceeds similarly. □

Theorem 4.7 (Verification of Semgus is not reducible to (co-)CHC Satisfiability). There
exists a program 𝑡 and SemGuS problem Sy such that verifying 𝑡 satisfies Sy cannot be reduced to

satisfiability of Constrained Horn Clauses nor coConstrained Horn Clauses.

Proof. To prove that some solution 𝑇 satisfies a SemGuS problem Sy, one must prove that the
least solution to the semantic rules SEMsy of Sy satisfies the specification 𝜑Sy when the solution
𝑇 is substituted for each occurence of a synthesis function (i.e. SEMLFP

Sy
|= 𝜑sy [𝑓 ↦→ 𝑇 (𝑓) : 𝑓 ∈

dom(𝐹sy)]). By assumption, we know that the semantic rules SEMSy are represented as a set of
constrained horn clauses, and the specification 𝜑Sy as an arbitrary first-order formula with no free
variables that may include any of the semantic relations defined by the semantic rules. Specifically,
the specification 𝜑Sy may contain both negative and positive occurrences of semantic relations.

, Vol. 1, No. 1, Article . Publication date: May 2024.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Anon.

Thus in general (and specifically for 𝜑comm in eq. (7)), the specification is not a valid query formula
for checking satisfiability using constrained horn clauses.
Recall that satisfiability problem for CHCs is typically formulated as reachability (i.e., given

a set of CHCs and a formula, can the formula be derived from the set of CHC rules?). This
formulation is known to be logically equivalent to determining if some interpretation (namely the
least interpretation [Hetzl and Kloibhofer 2021]) of the uninterpreted relations satisfies every CHC
rule and the given formula when the provided query formula is of the form [Bjørner et al. 2013]:

∀𝑥 . 𝑅(𝑥) ⇒ 𝜓

where 𝑅 is an uninterpreted relation defined by the CHC rules, and 𝜓 is a constraint over the
variables 𝑥 . Note, that there is no way to transform arbitrary first-order formulas (i.e. SemGuS
specification) to this form. Thus we may conclude that there are some SemGuS verification problems
not reducible to CHC satisfiability. □

Theorem 4.8 (muclp-of is sound). For any SemGuS
𝜇
problem P =

〈
𝐺,

〈
SEM, J·K

〉
, 𝐹 , 𝜑

〉
and

solution P of P, the query returned by muclp-of (P, P) is valid if and only P is a valid solution of P.

Proof. Let rules |= 𝜓 be the query returned by muclp-of. We must prove rulesFP |= 𝜓 if and
only if SEMLFP |= 𝜑 [𝑓 ↦→ 𝑃 (𝑓)]. We proceed to prove by induction on the number of iterations of
the main loop of muclp-of, that rules are logically equivalent to to rules defining the semantic
relations that have been explored previously. Trivially this holds true before entry to the loop. Let
SEM𝐴, 𝑡 ′, fix be the next elements to processed by the main loop of muclp-of. The first step is to
retrieve the rule defining the Sem𝐴 for the root production rule of 𝑡 ′. Next, we optionally dualize
the the rule if fix is 𝜈 (i.e. we are interested in computing the dual relation of Sem𝐴). Next, the rule
is normalized. This process replaces very negative occurrence of a semantic relation with it’s dual
relation (i.e. Sem¬

𝐴′). Each of these transformations preserves the semantic relations interpretation.
Then finally, every positive occurring semantic relation Sem𝐴 𝑗

is added to the queue to compute its
semantics, and every semantic relation appearing negatively is added to teh queue to compute it’s
dual semantics. Thus, in some future iteration, each semantic relation of interest will have it’s a
rule defining it computed and added to the set of rules. Once, muclp-of, terminates it does so with
a set of rules rules that are equivalent to the definition of the semantic relations appearing in the
specification 𝜑 . Since𝜓 = Norm(𝜑) it’s clear that rulesFP |= 𝜓 if and only if SEMLFP |= 𝜑 . □

Theorem 4.9 (SemGuS𝜇 semantics and 𝜇CLP are eqally expressive). For every 𝜇CLP query

⟨𝜑, preds⟩, there is some SemGuS problem P and solution 𝑃 ∈ 𝐿(𝐺P) such that ⟨𝜑, preds⟩ is valid if
and only if 𝑃 is a valid solution to P.

Proof. Let 𝑋0 (𝑥0) =fix0= 𝜑0; . . . ;𝑋𝑛 (𝑥𝑛) =fix𝑛
𝜑𝑛 be the sequence of predicates making up pred.

Consider the following grammar 𝐴 := ⊤, that consists of a single nonterminal 𝐴 with a single
production rule ⊤. That is the the language of 𝐴 consists of a single word 𝐿(𝐴) = {⊤}. First, define
𝑌𝑖 to be 𝑋𝑖 if fix𝑖 is 𝜇 and 𝑋¬𝑖 otherwise, and similarly,𝜓𝑖 to be 𝜑𝑖 if fix𝑖 is 𝜇 and ¬𝜑𝑖 otherwise.

Let SEM𝐴 = {𝑌0, . . . , 𝑌𝑛} be the set of newly introduced predicate relations. For each 𝑌𝑖 define
J⊤K𝑌𝑖 to be the rule𝑌𝑖 (⊤, 𝑥𝑖) ← 𝜓𝑖 [𝑚] where𝑚maps every occurrence of𝑋 𝑗 (𝑥 𝑗) in𝜓𝑖 to𝑌𝑗 (𝑡𝐴, 𝑥 𝑗) if
fiX 𝑗 is 𝜇 and ¬𝑌𝑗 (𝑡𝐴, 𝑥 𝑗) otherwise (𝑡𝐴 is a variable representing elements of 𝐿(𝐴)). Similarly, define
𝜑spec = 𝜑 [𝑚] to be the constraint of the muclp query using the same substitution𝑚. Finally, define
P to be the SemGuS𝜇 problem defined by the grammar for 𝐴, semantics

〈
SEM𝐴, JK

〉
, specification,

and set of synthesis functions 𝐹 = {⟨𝑡𝐴, 𝐴⟩}.
In order to prove that predFP |= 𝜑 if and only if SEMLFP

𝐴
|= 𝜑spec , we prove that for each predicate

𝑋𝑖 that if fix𝑖 is 𝜇 then the fixpoint of 𝑋𝑖 is the least fixpoint of 𝑌𝑖 (𝑋 FP

𝑖 = 𝑌 LFP

𝑖); otherwise, that the
fixpoint of 𝑋𝑖 is the dual of the least fixpoint of 𝑌𝑖 (𝑋 FP

𝑖 = ¬𝑌 LFP

𝑖). We proceed by induction on 𝑛 the

, Vol. 1, No. 1, Article . Publication date: May 2024.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Verifying Solutions to Semantics-Guided Synthesis Problems 27

number of rules defining the 𝜇CLP query. First, consider the case when there are no rules. Trivially,
the claim holds. Now, assume that for each 𝑖 > 0 that the claim holds for 𝑋𝑖 and 𝑌𝑖 . We no proceed
to prove the case for 𝑋0 and 𝑌0. Consider the case when fiX 0 is 𝜇. By definition 𝑋 FP

𝑖 = 𝑋 LFP

𝑖 , 𝑋𝑖 = 𝑌𝑖
and J⊤K𝑦𝑖 = 𝑌𝑖 (⊤, 𝑥𝑖) ← 𝜑𝑖 [𝑚]. Both 𝑋𝑖 and 𝑌𝑖 are defined as least fixed points. Additionally 𝜑𝑖 [𝑚]
is identical to 𝜑𝑖 except every occurrence of 𝑋 𝑗 has been replace with either 𝑌𝑖 if fix 𝑗 is 𝜇 or by ¬𝑌𝑖
if fix 𝑗 is 𝜈 . In either case, we may it is clear from the inductive hypothesis that the substitution
preserves fixedpoints. Since, both rules are defined as least fixedpoints, with logically equivalent
definitions, we can conclude that 𝑋 FP

𝑖 and 𝑌 LFP

𝑖 are equivalent. Next, we consider the case when
fix0 is 𝜈 . Then by definition, 𝑌0 = 𝑋¬0 and J⊤K𝑌0 is 𝑌0 (⊤, 𝑥0) ← ¬𝜑0 [𝑚]. Similarly, to the previous
case, we may use the IH to assume that for each 𝑋 𝑗 ≠ 𝑋0 the substitution substitutes equivalent
terms. We note, that the rule defining 𝑌0 is dual to the rule defining 𝑋0. Thus, we can may conclude
this case and have proved that if fix𝑖 then the fixpoint of 𝑋𝑖 is the least fixpoint of 𝑌𝑖 and otherwise
𝑋𝑖 is the dual fixpoint of 𝑌𝑖 . □

Theorem 4.10 (SemGuS and 𝜇CLP are not eqally expressive). Verifying solutions to SemGuS

problems can be encoded within a fragment of 𝜇CLP that uses at most one alternation between greatest

and least fixed points.

Proof. As stated in theorem 4.9, every SemGuS𝜇 verification problem is expressible as a 𝜇CLP
query and vice versa. Thus, verification of solutions to SemGuS𝜇 problems requires the full generality
of the 𝜇CLP calculus. Since every SemGuS problem is equivalently representable as a SemGuS𝜇
problem, clearly verification of SemGuS problems can be reduced to validity of a 𝜇CLP query.
However, verification of solutions to SemGuS problems do not require the full generality of the
𝜇CLP calculus. Specifically, the encoding described in muclp-of will result in a 𝜇CLP formula that
(at most) contains equations describing the semantic and dual semantic relations with no interaction
between the two (i.e. does not require any interaction between greatest and least fixed-points).
Thus we may conclude the fact that verification of solutions to SemGuS𝜇 problems in general
require a more expressive logical encoding than the encoding of verification of solutions to SemGuS
problems. □

Theorem 5.3 (Reification is sound). Given a formula 𝜑 and a set, rules, of semantic rules,

let 𝜓 be the formula in which every occurrence of Sem𝐴 (𝑡, Γ, Υ) is replaced by the reified seman-

tic relation Sem
𝑡
𝐴
(Γ, Υ), and rules

reify
is the conjunction of the reified semantic rules produced by

reify (rules, Sem𝐴, 𝑡) for each Sem𝐴 (𝑡, Γ, Υ) appearing in 𝜑 . The constraint 𝜑 is valid under the original

semantic rules rules if and only if𝜓 is valid under the reified semantic rules: rules |= 𝜑 ⇔ rules
reify |= 𝜓 .

Proof. We begin by induction on the height of the tree 𝑡 . The case when 𝑡 has height 0 is
trivial. Next, assume for any subtree 𝑡 ′ of 𝑡 that Sem𝐴 (𝑡 ′, Γ′, Υ′) is logically equivalent to Sem𝑡 ′

𝐴
Γ′, Υ.

refify computes the rule Sem𝑡
𝐴
(Γ, Υ) ← 𝜑 [𝑚] where𝑚 is a map substituting every occurrence of

Sem𝐴 𝑗
(𝑡 𝑗 , Γ𝑗 , Υ𝑗) with Sem

𝑡 𝐽

𝐴 𝑗
(Γ𝑗 , Υ𝑗). Either 𝑡 𝑗 is a subtree of 𝑡 or 𝑡 𝑗 = 𝑡 . In the first case, the inductive

hypothesis may be used to show that the substitution preserve logical equivalence of the two rules.
Otherwise, if 𝑡 𝑗 = 𝑡 , we use coinduction to show that the possibly infinite cycle of cycle of semantic
rules with program terms are logically equivalent to their reified version. The argument holds that,
if the property holds, then it will continue to hold regardless of how the semantic rules are defined.
We may then conclude that the reified rules and original rules are logically equivalent. □

, Vol. 1, No. 1, Article . Publication date: May 2024.

	Abstract
	1 Introduction
	2 Overview
	2.1 Max2: Quantified SMT
	2.2 DoubleViaLoop Partial: CHCs
	2.3 DoubleViaLoop Total: CHCs and co-CHCs
	2.4 Hyperproperties: muCLP
	2.5 Beyond SemGuS

	3 SemGuS and muSemGuS
	3.1 Syntax as Regular Tree Grammars
	3.2 Semantics via Logical Relations and Fixed-point Logics
	3.3 Specifications and muSemGuS Problems

	4 Verifying Candidate Programs
	4.1 Encoding Nonrecursive muSemGuS Verification Problems with Quantified SMT
	4.2 Encoding CHC-like muSemGuS Verification Problems with CHCs and Co-CHCs
	4.3 Encoding all muSemGuS Verification Problems with muCLP

	5 Implementation
	6 Experiments
	6.1 Benchmarks
	6.2 Q1: Effectiveness of Muse
	6.3 Q2: Effectiveness of the Optimizations from sec:Implementation
	6.4 Q3: Integration with an Enumeration-Based SemGuS Synthesizer

	7 related work
	8 Conclusion
	References
	A Proofs of Theorems

